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PREFACE.

THE fact that certain bodies, after being rubbed,
appear to attract other bodies, was known to the
ancients. In modern times, a great variety of other
phenomena have been observed, and have been found
to be related to these phenomena of attraction. They
have been classed under the name of FElectric phe-
nomena, amber, 7Aextpov, having been the substance
in which they were first described.

Other bodies, particularly the loadstone, and pieces
of iron and steel which have been subjected to certain
processes, have also been long known to exhibit phe-
nomena of action at a distance. These phenomena,
with others related to them, were found to differ from
the electric phenomena, and have been classed under
the name of Magnetic phenomena, the loadstone, udyvzs,
being found in the Thessalian Magnesia.

These two classes of phenomena have since been
found to be related to each other, and the relations
between the various phenomena of both classes, so
far as they are known, constitute the science of Elec-
tromagnetism. 3

In the following Treatise I propose to describe the
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vi PREFACE.

most important of these phenomena, to shew how they
may be subjected to measurement, and to trace the
mathematical connexions of the quantities measured.
Having thus obtained the data for a mathematical
theory of electromagnetism, and having shewn how
this theory may be applied to the calculation of phe-
nomena, I shall endeavour to place in as clear a light
as I can the relations between the mathematical form
of this theory and that of the fundamental science of
Dynamics, in order that we may be in some degree
prepared to determine the kind of dynamical pheno-
mena among which we are to look for illustrations or
cxplanations of the electromagnetic phenomena.

In describing the phenomena, I shall select those
which most clearly illustrate the fundamental ideas of
the theory, omitting others, or reserving them till the
reader is more advanced.

The most important aspect of any phenomenon from
a mathematical point of view is that of a measurable
quantity. I shall therefore consider electrical pheno-
mena chiefly with a view to their measurement, de-
scribing the methods of measurement, and defining
the standards on which they depend.

In the application of mathematics to the calculation
of electrical quantities, I shall endeavour in the first
place to deduce the most general conclusions from the
data at our disposal, and in the next place to apply
the results to the simplest cases that can be chosen.
I shall avoid, as much as I can, those questions which,
though they have elicited the skill of mathematicians,
have not enlarged our knowledge of science.



PREFACE. vii

The internal relations of the different branches of
the science which we have to study are more numerous
and complex than those of any other science hitherto
developed. Its external relations, on the one hand to
dynamics, and on the other to heat, light, chemical
action, and the constitution of bodies, seem to indicate
the special importance of electrical science as an aid
to the interpretation of nature.

It appears to me, therefore, that the study of elec-
tromagnetism in all its extent has now become of the
first importance as a means of promoting the progress
of science.

The mathematical laws of the different classes of
phenomena have been to a great extent satisfactorily
made out.

The connexions between the different classes of phe-
nomena have also been investigated, and the proba-
bility of the rigorous exactness of the experimental
laws has been greatly strengthened by a more extended
knowledge of their relations to each other.

Finally, some progress has been made in the re-
duction of electromagnetism to a dynamical science,
by shewing that no electromagnetic phenomenon is
contradictory to the supposition that it depends on
purely dynamical action.

What has been hitherto done, however, has by no
means exhausted the field of electrical research. It
has rather opened up that field, by pointing out sub-
jects of enquiry, and furnishing us with means of
investigation.

It is hardly necessary to enlarge upon the beneficial
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results of magnetic research on navigation, and the
importance of a knowledge of the true direction of
the compass, and of the effect of the iron in a ship.
But the labours of those who have endeavoured to
render navigation more secure by means of magnetic
observations have at the same time greatly advanced
the progress of pure science.

Gauss, as a member of the German Magnetic Union,
brought his powerful intellect to bear on the theory
of magnetism, and on the methods of observing i,
and he not only added greatly to our knowledge of
the theory of attractions, but reconstructed the whole
of magnetic science as regards the instruments used,
the methods of observation, and the calculation of the
results, so that his memoirs on Terrestrial Magnetism
may be taken as models of physical research by all
those who are engaged in the measurement of any
of the forces in nature.

The important applications of electromagnetism to
telegraphy have also reacted on pure science by giving
a commercial value to accurate electrical measure-
ments, and by affording to electricians the use of
apparatus on a scale which greatly transcends that
of any ordinary laboratory. The consequences of this
demand for electrical knowledge, and of these experi-
mental opportunities for acquiring it, have been already
very great, both in stimulating the energies of ad-
vanced electricians, and in diffusing among practical
men a degree of accurate knowledge which is likely
to conduce to the general scientific progress of the
whole engineering profession.
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There are several treatises in which electrical and
magnetic phenomena are described in a popular way.
These, however, are not what is wanted by those who
have been brought face to face with quantities to be
measured, and whose minds do not rest satisfied with
lecture-room experiments.

There is also a considerable mass of mathematical
memoirs which are of great importance in electrical
science, but they lie concealed in the bulky Trans-
actions of learned societies; they do not form a con-
nected system; they are of very unequal merit, and
they are for the most part beyond the comprehension
of any but professed mathematicians.

I have therefore thought that a treatise would be
useful which should have for its principal object to
take up the whole subject in a methodical manner,
and which should also indicate how each part of the
subject is brought within the reach of methods of
verification by actual measurement.

The general complexion of the treatise differs con-
siderably from that of several excellent electrical
works, published, most of them, in Germany, and it
may appear that scant justice is done to the specu-
lations of several eminent electricians and mathema-
‘ticians. One reason of this is that before I began
the study of electricity I resolved to read no mathe-
matics on the subject till I had first read through
Faraday's Experivmental Researches on Electricity. 1
was aware that there was supposed to be a difference
between Faraday's way of conceiving phenomena and
that of the mathematicians, so that neither he nor
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they were satisfied with each other’s language. I had
also the conviction that this discrepancy did not arise
from either party being wrong. I was first convinced
of this by Sir William Thomson *, to whose advice and
assistance, as well as to his published papers, I owe
most of what I have learned on the subject.

As I proceeded with the study of Faraday, I per-
ceived that his method of conceiving the phenomena
was also a mathematical one, though not exhibited
in the conventional form of mathematical symbols. I
also found that these methods were capable of being
expressed in the ordinary mathematical forms, and
thus compared with those of the professed mathema-
ticians.

For instance, Faraday, in his mind’s eye, saw lines
of force traversing all space where the mathematicians
saw centres of force attracting at a distance : Faraday
saw a medium where they saw nothing but distance:
Faraday sought the seat of the phenomena in real
actions going on in the medium, they were satisfied
that they had found it in a power of action at a
distance impressed on the electric fluids.

When I had translated what I considered to be
Faraday’s ideas into a mathematical form, I found
that in general the results of the two methods coin-
cided, so that the same phenomena were accounted
for, and the same laws of action deduced by both
methods, but that Faraday’s methods resembled those

* I take this opportunity of acknowledging my obligations to Sir
W. Thomson and to Professor Tait for many valuable suggestions made
during the printing of this work.
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in which we begin with the whole and arrive at the
parts by analysis, while the ordinary mathematical
methods were founded on the principle of beginning
with the parts and building up the whole by syn-
thesis.

I also found that several of the most fertile methods
of research discovered by the mathematicians could be
expressed much better in terms of ideas derived from
Faraday than in their original form.

The whole theory, for instance, of the potential, con-
sidered as a quantity which satisfies a certain partial
differential equation, belongs essentially to the method
which I have called that of Faraday. According to
the other method, the potential, if it is to be considered
at all, must be regarded as the result of a summa-
tion of the electrified particles divided each by its dis-
tance from a given point. Hence many of the mathe-
matical discoveries of Laplace, Poisson, Green and
Gauss find their proper place in this treatise, and their
appropriate expression in terms of conceptions mainly
derived from Faraday.

Great progress has been made in electrical science,
chiefly in Germany, by cultivators of the theory of
action at a distance. The valuable electrical measure-
ments of W. Weber are interpreted by him according
to this theory, and the electromagnetic speculation
which was originated by Gauss, and carried on by
Weber, Riemann, J. and C. Neumann, Lorenz, &ec. is
founded on the theory of action at a distance, but
depending either directly on the relative velocity of the
particles, or on the gradual propagation of something,
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whether potential or force, from the one particle to
the other. The great success which these eminent
men have attained in the application of mathematics
to “electrical phenomena gives, as is natural, addi-
tional weight to their theoretical speculations, so that
those who, as students of electricity, turn to them as
the greatest authorities in mathematical electricity,
would probably imbibe, along with their mathematical
methods, their physical hypotheses.

These physical hypotheses, however, are entirely
alien from the way of looking at things which I
adopt, and one object which I have in view is that
some of those who wish to study electricity may, by
reading this treatise, come to see that there is another
way of treating the subject, which is no less fitted to
explain the phenomena, and which, though in some
parts it may appear less definite, corresponds, as I
think, more faithfully with our actual knowledge, both
in what it affirms and in what it leaves undecided.

In a philosophical point of view, moreover, it is
exceedingly important that two methods should be
compared, both of which have succeeded in explaining
the principal electromagnetic phenomena, and both of
which have attempted to explain the propagation of
light as an electromagnetic phenomenon, and have
actually calculated its velocity, while at the same time
the fundamental conceptions of what actually takes
place, as well as most of the sccondary conceptions of
the quantities concerned, are radically different.

I have therefore taken the part of an advocate rather
than that of a judge, and have rather exemplified one



PREFACE. xiii

method than attempted to give an impartial description
of both. T have no doubt that the method which I
have called the German one will also find its sup-
porters, and will be expounded with a skill worthy
of its ingenuity.

I have not attempted an exhaustive account of elec-
trical phenomena, experiments, and apparatus. The
student who desires to read all that is known on these
subjects will find great assistance from the Z7raité
d’ Electricité of Professor A. de la Rive, and from several
German treatises, such as Wiedemann’s Galvanismus,
Riess’ Reibungselektricitiit, Beer’s Einleitung in die Elek-
trostatik, &ec.

I have confined myself almost entirely to the ma-
thematical treatment of the subject, but I would
recommend the student, after he has learned, experi-
mentally if possible, what are the phenomena to be
observed, to read carefully Faradays Experimental
Researches in Electricity. He will there find a strictly
contemporary historical account of some of the greatest
electrical discoveries and investigations, carried on in
an order and succession which could hardly have been
improved if the results had been known from the
first, and expressed in the language of a man who
devoted much of his attention to the methods of ac-
curately describing scientific operations and their re-
sults *.

It is of great advantage to the student of any
subject to read the original memoirs on that subject,
for science is always most completely assimilated when

* Life and Letters of Faraday, vol. i. p. 395.
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it is in the nascent state, and in the case of Faraday’s
Researches this is comparatively easy, as they are
published in a separate form, and may be read con-
secutively. If by anything I have here written I
may assist any student in understanding Faraday’s
modes of thought and expression, I shall regard it as
the accomplishment of one of my principal aims—to
communicate to others the same delight which I have
found myself in reading Faraday's Researches.

The description of the phenomena, and the ele-
mentary parts of the theory of each subject, will be
found in the earlier chapters of each of the four Parts
into which this treatise is divided. The student will
find in these chapters enough to give him an elementary
acquaintance with the whole science.

The remaining chapters of each Part are occupied
with the higher parts of the theory, the processes of
numerical calculation, and the instruments and methods
of experimental research.

The relations between electromagnetic phenomena
and those of radiation, the theory of molecular electric
currents, and the results of speculation on the nature
of action at a distance, are treated of in the last four
chapters of the second volume.

Feb. 1, 1873.
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Page 26, 1. 3 from bottom, dele ¢As we have made no assumption’, &e.

down to 1. 7 of p. 27, ‘the expression may then be written’, and
substitute as follows :—

Let us now suppose that the curves for which a is constant
form a series of closed curves, smrounding the point on the surface
for which a has its minimum value, a,, the last curve of the series,
for which a = a,, coinciding with the original closed curve s.

Let us also suppose that the curves for which 3 is constant form
a series of lines drawn from the point at which a = a, to the
closed curve s, the first, 3, and the last, 3,, being identical.

Integrating (8) by parts, the first term with respect to a and
the second Wlth respect to 3, the double integrals destroy each
other. The line integral,

81

is zero, because the curve a = a0 is reduced to a point at which
there is but one value of X and of .
The two line integrals,

e dx
_/m X7, _da +f (Xda’3 B;la,
destroy each other, because the point (@, 8,) is identical with the
point (a, B,).
The expression (8) is therefore reduced to
X dp. 9
( d 5)4 ch ﬂ ( )
Since the curve a = a, is identical with the closed curve s, we
may write this expression

. 80, in equations (3), (4), (6), (8), (17), (18), (19), (20), (21), (22), for

read N.

p. 82, 1. 3, for Rl read N1

2
p- 83, in equations (28), (29), (30), (31), for ddle S

g g

a:v’
dzdv’
,» in equation (29), insert — before the second member.

. 105, 1. 2, for Q read 8mQ.
. 108, equation (1), for P, read .

» » (2), for p’ read p.
2 ” (3), for ¢ read o’
,, ’ (4), for ¢’ read o.

113, L 4, for KR read %TKR.

» L5, for KRR cose read %_-TKRRICOS €

. 114, L. 5, for S, read S.

124, last line, for e,+e, read e;+e,.
125, lines 3 and 4, transpose within and without; 1 16, for v
read V and 1 18, for V read v.

. 128, lines 11, 10, 8 from bottom, for dx read dz.
. 149, 1. 24, for equpotential read equipotential.
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p-
. 404, at the end of Art. 350 insert as follows :—

TR T OBEE BB OB T BB

. 356, equation (12), for E-l read ——| -

ERRATA. VOL. I.

. 159, L. 8, for F read f.

1. 2 from bottom, for M read M,.

b2

. 163, L. 20, for Aji—s+1 read Ai—s+a.

i

- 28 2 s
164, equation (34), for (—1)~" 22"|TW read (—1)—°

179, equation (76), for i+1 read 274 1.
: a2 22 22
185, equation (24), for e 1 read Fra—p=L
186, 1. 5 from bottom, for ‘The surface-density on the elliptic plate’
read The surface-density on either side of the elliptic plate.

186, equation (30), for 2w read 4.

188, equation (38), for % read 22

196, 1. 27, for e..e read e, ..e;.

é¢a’

Ee
. b TR T N
197, equation (10) should be 2 %ﬂ(fz-a”)

.

204, 1. 15 from bottom, dele either.
215, 1. 4, for o/2k read A/2F.

234, equation (13), for 2 read QE;

. 335, dele last 14 lines.
. 336, 1. 1, dele therefore.

L. 2, for ‘the potential at C' to exceed that at D by P, read a
current, ¢, from X to Y.

L. 4, for ¢<C to D will cause the potential at 4 to exceed that at
B by the same quantity P, read X to ¥ will cause an equal
current O from 4 to B.

. 351, L 3, for B2+ B2+ RB2w® read R,u?+ R,v*+ R,

av- dv arv.
PRl 5  read) +2f‘/f(u% +v@+wgg)dxdydz.
355, last line, for 8’ read 8.
b’ ao|*
dx

. 365, in equations (12), (15), (16), for 4 read Av.
. 366, equation (3), for 7'—2 read 73-

. 367, 1. 5, for 21,8 read 2k,8.
. 368, equation (14), for J, read I,.

397s Ol B15% for %6’ read g—,ﬁ'.

When y, the resistance to be measured, @, the resistance of the
battery, and a, the resistance of the galvanometer, are given, the
best values of the other resistances have been shewn by Mr. Oliver
Heaviside (Phil. Mag., Feb. 1873) to be

c=+aa, b= a,yg%, ﬁz\/ayziz-
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ELECTRICITY AND MAGNETISM.

PRELIMINARY.
ON THE MEASUREMENT OF QUANTITIES.

1.] Every expression of a Quantity consists of two factors or
components. One of these is the name of a certain known guan-
tity of the same kind as the quantity to be expressed, which is
taken as a standard of reference. The other component is the
number of times the standard is to be taken in order to make up
the required quantity. The standard quantity is technically called
the Unit, and the number is called the Numerical Value of the
quantity.

There must be as many different units as there are different
kinds of quantities to be measured, but in all dynamical sciences
it is possible to define these units in terms of the three funda-
mental units of Length, Time, and Mass. Thus the units of area
and of volume are defined respectively as the square and the cube
whose sides are the unit of length.

Sometimes, however, we find several units of the same kind
founded on independent considerations. Thus the gallon, or the
volume of ten pounds of water, is used as a unit of capacity as well
as the cubic foot. The gallon may be a convenient measure in
some cases, but it is not a systematic one, since its numerical re-
lation to the cubic foot is not a round integral number.

2.] In framing a mathematical system we suppose the funda-
mental units of length, time, and mass to be given, and deduce
all the derivative units from these by the simplest attainable de-
finitions.

The formulae at which we arrive must be such that a person

VOL. L. B
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2 PRELIMINARY. s

of any nation, by substituting for the different symbols the nu-
merical value of the quantities as measured by his own national
units, would arrive at a true result.

Hence, in all scientific studies it is of the greatest importance
to employ units belonging to a properly defined system, and to
know the relations of these units to the fundamental units, so that
we may be able at once to transform our results from one system to
another.

This is most conveniently done by ascertaining the dimensions
of every unit in terms of the three fundamental units. When a
given unit varies as the #th power of one of these units, it is said
to be of # dimensions as regards that unit.

For instance, the scientific unit of volume is always the cube
whose side is the unit of length. If the unit of length varies,
the unit of volume will vary as its third power, and the unit of
volume is said to be of three dimensions with respect to the unit of
length.

A knowledge of the dimensions of units furnishes a test which
ought to be applied to the equations resulting from any lengthened
investigation. The dimensions of every term of such an equa-
tion, with respect to each of the three fundamental units, must
be the same. If not, the equation is absurd, and contains some
error, as its interpretation would be different according to the arbi-
trary system of units which we adopt *.

The Three Fundamental Units.

3.] (1) Length. The standard of length for scientific purposes
in this country is one foot, which is the third part of the standard
yard preserved in the Exchequer Chambers.

In France, and other countries which have adopted the metric
system, it is the meétre. The meétre is theoretically the ten mil-
lionth part of the length of a meridian of the earth measured
from the pole to the equator ; but practically it is the length of
a standard preserved in Paris, which was constructed by Borda
to correspond, when at the temperature of melting ice, with the
value of the preceding length as measured by Delambre. The métre
has not been altered to correspond with new and more accurate

measurements of the earth, but the are of the meridian is estimated
in terms of the original matre.

* The theory of dimensions was first stated by Fourier, Théorie de Chaleur, § 160.



5.] THE THREE FUNDAMENTAL UNITS. 3

In astronomy the mean distance of the earth from the sun is
sometimes taken as a unit of length.

In the present state of science the most universal standard of
length which we could assume would be the wave length in vacuum
of a particular kind of light, emitted by some widely diffused sub-
stance such as sodium, which has well-defined lines in its spectrum.
Such a standard would be independent of any changes in the di-
mensions of the earth, and should be adopted by those who expect
their writings to be more permanent than that body.

In treating of the dimensions of units we shall call the unit of
length [L]. If 7is the numerical value of a length, it is under-
stood to be expressed in terms of the concrete unit [L], so that
the actual length would be fully expressed by 7 [L].

4.] (2) Time. The standard unit of time in all civilized coun-
tries is deduced from the time of rotation of the earth about its
axis. The sidereal day, or the true period of rotation of the earth,
can be ascertained with great exactness by the ordinary observa-
tions of astronomers; and the mean solar day can be deduced
from this by our knowledge of the length of the year.

The unit of time adopted in all physical researches is one second
of mean solar time.

In astronomy a year is sometimes used as a unit of time. A
more universal unit of time might be found by taking the periodic
time of vibration of the particular kind of light whose wave length
is the unit of length.

We shall call the concrete unit of time [7], and the numerical
measure of time 2.

5.] (8) Mass. The standard unit of mass is in this country the
avoirdupois pound preserved in the Exchequer Chambers. The
grain, which is often used as a unit, is defined to be the 7000th
part of this pound.

In the metrical system it is the gramme, which is theoretically
the mass of a cubic centimétre of distilled water at standard tem-
perature and pressure, but practically it is the thousandth part
of a standard kilogramme preserved in Paris.

The accuracy with which the masses of bodies can be com-
pared by weighing is far greater than that hitherto attained in
the measurement of lengths, so that all masses ought, if possible,
to be compared directly with the standard, and not deduced from
experiments on water.

In descriptive astronomy the mass of the sun or that of the

B 2
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earth is sometimes taken as a unit, but in the dynamical theory
of astronomy the unit of mass is deduced from the units of time
and length, combined with the fact of universal gravitation. The
astronomical unit of mass is that mass which attracts another
body placed at the unit of distance so as to produce in that body
the unit of acceleration.

In framing a universal system of units we may either deduce
the unit of mass in this way from those of length and time
already defined, and this we can do to a rough approximation in
the present state of science ; or, if we expect * soon to be able to
determine the mass of a single molecule of a standard substance,
we may wait for this determination before fixing a universal
standard of mass.

We shall denote the concrete unit of mass by the symbol [M]
in treating of the dimensions of other units. The unit of mass
will be taken as one of the three fundamental units. When, as
in the French system, a particular substance, water, is taken as
a standard of density, then the unit of mass is no longer inde-
pendent, but varies as the unit of volume, or as [ Z%].

If, as in the astronomical system, the umit of mass is defined
with respect to its attractive power, the dimensions of [M] are
[ Pedle

For the acceleration due to the attraction of a mass m at a

distance 7 is by the Newtonian Law ;7:— Suppose this attraction

to act for a very small time Z on a body originally at rest, and to
cause it to describe a space s, then by the formula of Galileo,

m
¢ 8=%fiz=%ﬁt2;

2
whence m = 2%;. Since » and s are both lengths, and ¢ is a

time, this equation cannot be true unless the dimensions of  are
[Z37T-%]. The same can be shewn from any astronomical equa-
tion in which the mass of a body appears in some but not i all
of the terms ¥.

* See Prof. J. Loschmidt, ¢ Zur Grosse der Luftmolecule,” Academy of Vienna,
Oct. 12, 1865; G. J. Stoney on ‘The Internal Motions of Gases,’ Phil. Mag., Aug.
1868 ; and Sir W. Thomson on ¢ The Size of Atoms,” Nature, March 31, 1870.

“ If a foot and a second are taken as units, the astronomical unit of mass would
be about 932,000,000 pounds.
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Derived Units.

6.] The unit of Velocity is that velocity in which unit of length
is described in unit of time. Its dimensions are [Z771].

If we adopt the units of length and time derived from the
vibrations of light, then the unit of velocity is the velocity of
light.

The unit of Acceleration is that acceleration in which the velo-
city increases by unity in unit of time. Its dimensionsare [Z72].

The unit of Density is the density of a substance which contains
unit of mass in unit of volume. Its dimensions are [ML~3].

The unit of Momentum is the momentum of unit of mass moving
with unit of velocity. Its dimensions are [MLT"1].

The unit of Force is the force which produces unit of momentum
in unit of time. Its dimensions are [M L7~2].

This is the absolute unit of force, and this definition of it is
implied in every equation in Dynamics. Nevertheless, in many
text books in which these equations are given, a different unit of
force is adopted, namely, the weight of the national unit of mass;
and then, in order to satisfy the equations, the national unit of mass
is itself abandoned, and an artificial unit is adopted as the dynamical
unit, equal to the national unit divided by the numerical value of
the force of gravity at the place. In this way both the unit of force
and the unit of mass are made to depend on the value of the
force of gravity, which varies from place to place, so that state-
ments involving these quantities are not complete without a know-
ledge of the force of gravity in the places where these statements
were found to be true.

The abolition, for all scientific purposes, of this method of mea-
suring forces is mainly due to the introduction of a general system
of making observations of magnetic force in countries in which
the force of gravity is different. All such forces are now measured
according to the strictly dynamical method deduced from our
definitions, and the numerical results are the same in whatever
country the experiments are made.

" The unit of Work is the work done by the unit of force acting
through the unit of length measured in its own direction. Its
dimensions are [ M L2T-%].

The Energy of a system, being its capacity of performing work,
is measured by the work which the system is capable of performing
by the expenditure of its whole energy.
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The definitions of other quantities, and of the units to which
they are referred, will be given when we require them.

In transforming the values of physical quantities determined in
terms of one unit, so as to express them in terms of any other unit
of the same kind, we have only to remember that every expres-
sion for the quantity consists of two factors, the unit and the nu-
merical part which expresses how often the unit is to be taken.
Hence the numerical part of the expression varies inversely as the
magnitude of the unit, that is, inversely as the various powers of
the fundamental units which are indicated by the dimensions of the
derived unit.

On Physical Continuity and Discontinuity.

7.] A quantity is said to vary continuously when, if it passes
from one value to another, it assumes all the intermediate values.

We may obtain the conception of continuity from a consideration
of the continuous existence of a particle of matter in time and space.
Such a particle cannot pass from one position to another without
describing a continuous line in space, and the coordinates of its
position must be continuous functions of the time.

In the so-called ¢equation of continuity,” as given in treatises
on Hydrodynamics, the fact expressed is that matter cannot appear
in or disappear from an element of volume without passing in or out
through the sides of that element.

A quantity is said to be a continuous function of its variables
when, if the variables alter continuously, the quantity itself alters
continuously.

Thus, if # is a function of #, and if, while # passes continuously
from x, to 2;, % passes continuously from w, to #;, but when 2
passes from =z, to 2,, » passes from #,” to #,, #;” being different from
#;, then » is said to have a discontinuity in its variation with
respect to « for the value # = @;, because it passes abruptly from #,
to »,” while 2 passes continuously through ;.

If we consider the differential coefficient of # with respect to z for
the value 2 = 2, as the limit of the fraction

Ug— 1,

v,—a,
when z, and #, are both made to approach 2, without limit, then,
if &, and @, are always on opposite sides of #,, the ultimate value of
the numerator will be v, — #;, and that of the denominator will
be zero. If # is a quantity physically continuous, the discontinuity



8.] CONTINUITY AND DISCONTINUITY. 7

can exist only with respect to the particular variable 2. We must
in this case admit that it has an infinite differential coefficient
when # = #,. If « is not physically continuous, it cannot be dif-
ferentiated at all. :

It is possible in physical questions to get rid of the idea of
discontinuity without sensibly altering the conditions of the case.
If @, is a very little less than «,, and z, a very little greater than
#;, then #, will be very nearly equal to #, and », to #,". We
may now suppose # to vary in any arbitrary but continuous manner
from #, to u, between the limits z, and z,. In many physical
questions we may begin with a hypothesis of this kind, and then
investigate the result when the values of #, and #, are made to
approach that of #; and ultimately to reach it. The result will
in most cases be independent of the arbitrary manner in which we
have supposed # to vary between the limits.

Discontinuity of a Function of more than One Variable.

8.] If we suppose the values of all the variables except z to be
constant, the discontinuity of the function will occur for particular
values of 2, and these will be connected with the values of the
other variables by an equation which we may write

¢ =¢ @y 2 &) =0.
The discontinuity will occur when ¢ = 0. When ¢ is positive the
function will have the form F,(z, 7, 2, &c.). When ¢ is negative
it will have the form F, (2, 7, z, &c.). There need be no necessary
relation between the forms 7] and 7.

To express this discontinuity in a mathematical form, let one of
the variables, say «, be expressed as a function of ¢ and the other
variables, and let F} and F, be expressed as functions of ¢, 7, z, &e.
We may now express the general form of the function by any
formula which is sensibly equal to F, when ¢ is positive,*and to
F, when ¢ is negative. Such a formula is the following—

Fit+ethy
F= .

As long as » is a finite quantity, however great, 7 will be a
continuous function, but if we make # infinite #' will be equal to
F, when ¢ is positive, and equal to F; when ¢ is negative.

Discontinuity of the Derivatives of a Continuous Function.

The first derivatives of a continuous function may be discon-
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tinuous. Let the values of the variables for which the discon-
tinuity of the derivatives occurs be connected by the equation

¢ = ¢(w,y,z...) =0,
and let 7, and Z, be expressed in terms of ¢ and n—1 other
variables, say (7,2 ...)-

Then, when ¢ is negative, F} is to be taken, and when ¢ is
positive F, is to be taken, and, since # is itself continuous, when
¢ is zero, I} = F,.

Hence, when ¢ is zero, the derivatives (fl_f;l and ‘fi—i’z may be
different, but the derivatives with respect to any of the other
variables, such as d—d——jﬂl and dd—;ﬂz, must be the same. The discon-
tinuity is therefore confined to the derivative with respect to ¢, all
the other derivatives being continuous.

Periodic and Multiple Functions.

9.] If « is a function of # such that its value is the same for
z, #+a, x+na, and all values of 2 differing by a, # is called a
periodic function of #, and « is called its period.

If z is considered as a function of #, then, for a given value of
u, there must be an infinite series of values of # differing by
multiples of . In this case # is called a multiple function of #,
and ¢ is called its cyclic constant,

The differential coefficient Z“.Z«
corresponding to a given value of .

has only a finite number of values

On the Relation of Physical Quantities to Directions in Space.

10.] In distinguishing the kinds of physical quantities, it is of
great importance to know how they are related to the directions
of those coordinate axes which we usually employ in defining the
positions of things. The introduction of coordinate axes into geo-
metry by Des Cartes was one of the greatest steps in mathematical
progress, for it reduced the methods of geometry to calculations
performed on numerical quantities. The position of a point is made
to depend on the length of three lines which are always drawn in
determinate directions, and the line joining two points is in like
manner considered as the resultant of three lines.

But for many purposes in physical reasoning, as distinguished
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from calculation, it is desirable to avoid explicitly introducing the
Cartesian coordinates, and to fix the mind at once on a point of
space instead of its three coordinates, and on the magnitude and
direction of a force instead of its three components. This mode
of contemplating geometrical and physical quantities is more prim-
itive and more natural than the other, although the ideas connected
with it did not receive their full development till Hamilton made
the next great step in dealing with space, by the invention of his
Calculus of Quaternions.

As the methods of Des Cartes are still the most familiar to
students of science, and as they are really the most useful for
purposes of caleulation, we shall express all our results in the
Cartesian form. I am convinced, however, that the introduction
of the ideas, as distinguished from the operations and methods of
Quaternions, will be of great use to us in the study of all parts
of our subject, and especially in electrodynamics, where we have to
deal with a number of physical quantities, the relations of which
to each other can be expressed far more simply by a few words of
Hamilton’s, than by the ordinary equations.

11.] One of the most important features of Hamilton’s method is
the division of quantities into Scalars and Vectors.

A Scalar quantity is capable of being completely defined by a
single numerical specification. Its numerical value does not in
any way depend on the directions we assume for the coordinate
axes.

A Vector, or Directed quantity, requires for its definition three
numerical specifications, and these may most simply be understood
as having reference to the directions of the coordinate axes.

Scalar quantities do not involve direction. The volume of a
geometrical figure, the mass and the energy of a material body,
the hydrostatical pressure at a point in a fluid, and the potential
at a point in space, are examples of scalar quantities.

A vector quantity has direction as well as magnitude, and is
such that a reversal of its direction reverses its sign. The dis-
placement of a point, represented by a straight line drawn from
its original to its final position, may be taken as the typical
vector quantity, from which indeed the name of Vector is derived.

The velocity of a body, its momentum, the force acting on it,
an electric current, the magnetization of a particle of iron, are
instances of vector quantities.

There are physical quantities of another kind which are related
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to directions in space, but which are not vectors. Stresses and
strains in solid bodies are examples of these, and the properties
of bodies considered in the theory of elasticity and in the theory
of double refraction. Quantities of this class require for their
definition #ine numerical specifications. They are expressed in the
language of Quaternions by linear and vector functions of a vector.

The addition of one vector quantity to another of the same kind
is performed according to the rule given in Statics for the com-
position of forces. In fact, the proof which Poisson gives of the
¢ parallelogram of forces’ is applicable to the composition of any
quantities such that a reversal of their sign is equivalent to turning
them end for end.

When we wish to denote a vector quantity by a single symbol,
and to call attention to the fact that it is a vector, so that we must
consider its direction as well as its magnitude, we shall denote
it by a German capital letter, as %, B, &c.

In the calculus of Quaternions, the position of a point in space
is defined by the vector drawn from a fixed point, called the origin,
to that point. If at that point of space we have to consider any
physical quantity whose value depends on the position of the point,
that quantity is treated as a function of the vector drawn from
the origin. The function may be itself either scalar or vector.
The density of a body, its temperature, its hydrostatic pressure,
the potential at a point, are examples of scalar functions. The
resultant force at the point, the velocity of a fluid at that point,
the velocity of rotation of an element of the fluid, and the couple
produeing rotation, are examples of vector functions.

12.] Physical vector quantities may be divided into two classes,
in one of which the quantity is defined with reference to a line,
while in the other the quantity is defined with reference to an
area.

For instance, the resultant of an attractive force in any direction
may be measured by finding the work which it would do on a
body if the body were moved a short distance in that direction
and dividing it by that short distance. Here the attractive force
is defined with reference to a line.

On the other hand, the flux of heat in any direction at any
point of a solid body may be defined as the quantity of heat which
crosses a small area drawn perpendicular to that direction divided
by that area and by the time. Here the flux is defined with
reference to an area.
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There are certain cases in which a quantity may be measured
with reference to a line as well as with reference to an area.

Thus, in treating of the displacements of elastic solids, we may
direct our attention either to the original and the actual position
of a particle, in which case the displacement of the particle is
measured by the line drawn from the first position to the second,
or we may consider a small area fixed in space, and determine
what quantity of the solid passes across that area during the dis-
placement.

In the same way the velocity of a fluid may be investigated
either with respect to the actual velocity of the individual parti-
cles, or with respect to the quantity of the fluid which flows through
any fixed area.

But in these cases we require to know separately the density of
the body as well as the displacement or velocity, in order to apply
the first method, and whenever we attempt to form a molecular
theory we have to use the second method.

In the case of the flow of electricity we do not know anything
of its density or its velocity in the conductor, we only know the
value of what, on the fluid theory, would correspond to the product
of the density and the velocity. Hence in all such cases we must
apply the more general method of measurement of the flux across
an area.

In electrical science, electromotive force and magnetic force
belong to the first class, being defined with reference to lines.
When we wish to indicate this fact, we may refer to them as
Forces.

On the other hand, electric and magnetic induction, and electrie
currents, belong to the second class, being defined with reference
to areas. When we wish to indicate this fact, we shall refer to them
as Fluxes.

Each of these forces may be considered as producing, or tending
to produce, its corresponding flux. Thus, electromotive force pro-
duces electric currents in conductors, and tends to produce them
in dielectrics. It produces electric induction in dielectrics, and pro-
bably in conductors also. In the same sense, magnetic force pro-
duces magnetic induction.

13.] In some cases the flux is simply proportional to the force
and in the same direction, but in other cases we can only affirm
that the direction and magnitude of the flux are functions of the
direction and magnitude of the force.
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The case in which the components of the flux are Zinear functions
of those of the force is discussed in the chapter on the Equations
of Conduction, Art. 296. There are in general nine coefficients
which determine the relation between the force and the flux. In
certain cases we have reason to believe that six of these coefficients
form three pairs of equal guantities. In such cases the relation be-
tween the line of direction of the force and the normal plane of the
flux is of the same kind as that between a diameter of an ellipsoid
and its conjugate diametral plane. In Quaternion language, the
one vector is said to be a linear and vector function of the other, and
when there are three pairs of equal coeflicients the function is said
to be self-conjugate.

In the case of magnetic induction in iron, the flux, (the mag-
netization of the iron,) is not a linear function of the magnetizing
force. In all cases, however, the product of the force and the
flux resolved in its direction, gives a result of scientific import-
ance, and this is always a scalar quantity.

14.] There are two mathematical operations of frequent occur-
rence which are appropriate to these two classes of vectors, or
directed quantities.

In the case of forces, we have to take the integral along a line
of the product of an element of the line, and the resolved part of
the force along that element. The result of this operation is
called the Line-integral of the force. It represents the work
done on a body carried along the line. In certain cases in which
the line-integral does not depend on the form of the line, but
only on the position of its extremities, the line-integral is called
the Potential. e

In the case of fluxes, we have to take the integral, over a surface,
of the flux through every element of the surface. The result of
this operation is called the Surface-integral of the flux. It repre-
sents the quantity which passes through the surface.

There are certain surfaces across which there is no flux. If
two of these surfaces intersect, their line of intersection is a line
of flux. In those cases in which the flux is in the same direction
as the force, lines of this kind are often called Lines of Force. It
would be more correct, however, to speak of them in electrostatics
and magnetics as Lines of Induction, and in electrokinematics as
Lines of Flow. '

15.] There is another distinction between different kinds of
directed quantities, which, though very important in a physical
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point of view, is not so necessary to be observed for the sake of
the mathematical methods. This is the distinction between longi-
tudinal and rotational properties.

The direction and magnitude of a quantity may depend upon
some action or effect which takes place entirely along a certain
line, or it may depend upon something of the nature of rota-
tion about that line as an axis. The laws of combination of
directed quantities are the same whether they are longitudinal or
rotational, so that there is no difference in the mathematical treat-
ment of the two classes, but there may be physical circumstances
which indicate to which class we must refer a particular pheno-
menon. Thus, electrolysis consists of the transfer of certain sub-
stances along a line in one direction, and of certain other sub-
stances in the opposite direction, which is evidently a longitudinal
phenomenon, and there is no evidence of any rotational effect
about the direction of the force. Hence we infer that the electric
current which causes or accompanies electrolysis is a longitudinal,
and not a rotational phenomenon.

On the other hand, the north and south poles of a magnet do
not differ as oxygen and hydrogen do, which appear at opposite
places during electrolysis, so that we have no evidence that mag-
netism is a longitudinal phenomenon, while the effect of magnetism
in rotating the plane of polarized light distinectly shews that mag-
netism is a rotational phenomenon.

On Line-integrals.

16.] The operation of integration of the resolved part of a vector
quantity along a line is important in physical science generally,
and should be clearly understood.

Let z,y, 2 be the coordinates of a point P on a line whose
length, measured from a certain point 4, is s. These coordinates
will be functions of a single variable s.

Let R be the value of the vector quantity at P, and let the
tangent to the curve at P make with the direction of 22 the angle ¢,
then Rcose is the resolved part of R along the line, and the
integral s
L= /; Rcoseds
is called the line-integral of 2 along the line s.

‘We may write this expression

SN o dy dz
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where X, ¥, Z are the components of 2 parallel to z, y, z respect-
ively.

This quantity is, in general, different for different lines drawn
between 4 and P. When, however, within a certain region, the
quantity

Xde+ Ydy+Zde =—D¥,
that is, is an exact differential within that region, the value of Z
becomes L =¥,—¥,,
and is the same for any two forms of the path between 4 and P,
provided the one form can be changed into the other by con-
tinuous motion without passing out of this region.

On Potentials.

The quantity ¥ is a scalar function of the position of the point,
and is therefore independent of the directions of reference. It is
called the Potential Function, and the vector quantity whose com-
ponents are X, ¥, Z is said to have a potential ¥, if

d¥. ¥, A
X=-— %), Y=_(d7/ » Z=~(7)

When a potential function exists, surfaces for which the po-
tential is constant are called Equipotential surfaces. The direction
of B at any point of such a surface coincides with the normal to
the surface, and if # be a normal at the point P, then B = —%‘5 .

The method of considering the components of a vector as the
first derivatives of a certain function of the coordinates with re-
spect to these coordinates was invented by Laplace* in his treat-
ment of the theory of attractions. The name of Potential was first
given to this function by Green+, who made it the basis of his
treatment of electricity. Green’s essay was neglected by mathe-
maticians till 1846, and before that time most of its important
theorems had been rediscovered by Gauss, Chasles, Sturm, and
Thomson }.

In the theory of gravitation the potential is taken with the
opposite sign to that which is here used, and the resultant force
In any direction is then measured by the rate of increase of the

* Méc. Céleste, liv. iii.

1 Essay on the Application of Mathematical Analysis to the Theories of Electricity
and Magnetism, Nottingham, 1828, Reprinted in Crelle’s Journal, and in Mr. Ferrer’s
edition of Green’s Works.

+ Thomson and Tait, Natural Philosophy, § 483.
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potential function in that direction. In electrical and magnetic
investigations the potential is defined so that the resultant force
in any direction is measured by the decrease of the potential in
that direction. This method of using the expression makes it
correspond in sign with potential energy, which always decreases
when the bodies are moved in the direction of the forces acting
on them.

17.] The geometrical nature of the relation between the poten-
tial and the vector thus derived from it receives great light from
Hamilton’s discovery of the form of the operator by which the vector
is derived from the potential.

The resolved part of the vector in any direction is, as we have
seen, the first derivative of the potential with respect to a co-
ordinate drawn in that direction, the sign being reversed.

Now if 4, j, # are three unit vectors at right angles to each
other, and if X, ¥, Z are the components of the vector § resolved
parallel to these vectors, then

§=iX+jY+kZ; (1)
and by what we have said above, if ¥ is the potential,
Ay Ay dY
8—_-—("/%4']71;-*-]572—)' 2y

If we now write V for the operator,
ig; +j%+/cgz—: (3)
F=—VT. (4)

The symbol of operation V may be interpreted as directing us
to measure, in each of three rectangular directions, the rate of
increase of ¥, and then, considering the quantities thus found as
vectors, to compound them into one. This is what we are directed
to do by the expression (3). But we may also consider it as directing
us first to find out in what direction ¥ increases fastest, and then
to lay off in that direction a vector representing this rate of
increase.

M. Lamé, in his Traité des Fonctions Inverses, uses the term
Differential Parameter to express the magnitude of this greatest
rate of increase, but neither the term itself, nor the mode in which
Lamé uses it, indicates that the quantity referred to has direction
as well as magnitude. On those rare occasions in which I shall have
to refer to this relation as a purely geometrical one, I shall eall the
vector § the Slope of the scalar function ¥, using the word Slope
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to indicate the direction, as well as the magnitude, of the most
rapid decrease of P.
18.] There are cases, however, in which the conditions
a4 _dy_ X _dZ_ .. dY X
a7 deis o hdg e T de dy
which are those of Xdw+ Ydy+ Zdz being a complete differential,
are fulfilled throughout a certain region of space, and yet the line-
integral from 4 to P may be different for two lines, each of
which lies wholly within that region. This may be the case if
the region is in the form of a ring, and if the two lines from 4
to P pass through opposite segments of the ring. In this case,
the one path cannot be transformed into the other by continuous
motion without passing out of the region.

We are here led to considerations belonging to the Geometry
of Position, a subject which, though its importance was pointed
out by Leibnitz and illustrated by Gauss, has been little studied.
The most complete treatment of this subject has been given by
J. B. Listing *.

Let there be p points in space, and let 7 lines of any form be
drawn joining these points so that no two lines intersect each
other, and no point is left isolated. We shall call a figure com-
posed of lines in this way a Diagram. Of these lines, p~1 are
sufficient to join the p points so as to form a connected system.
Every new line completes a loop or closed path, or, as we shall
call it, a Cycle. The number. of independent cycles in the diagram
is therefore « = /— p+1.

Any closed path drawn along the lines of the diagram is com-
posed of these independent cycles, each being taken any number of
times and in either direction.

The existence of cycles is called Cyeclosis, and the number of
cycles in a diagram is called its Cyclomatic number.

=0,

Cyclosis in Surfaces and Regions.

Surfaces are either complete or bounded. Complete surfaces are
either infinite or closed. Bounded surfaces are limited by one or -
more closed lines, which may in the limiting cases become finite
lines or points.

A finite region of space is bounded by one or more closed
surfaces. Of these one is the external surface, the others are

* Der Census Raiimlicher Complexe, Giott. Abh., Bd. x. S. 97 (1861).
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included in it and exclude each other, and are called internal
surfaces.

If the region has one bounding surface, we may suppose that
surface to contract inwards without breaking its continuity or
cutting itself. If the region is one of simple continuity, such as
a sphere, this process may be continued till it is reduced to a
point; but if the region is like a ring, the result will be a closed
curve; and if the region has multiple connexions, the result will
be a diagram of lines, and the cyclomatic number of the diagram
will be that of the region. The space outside the region has the
same cyclomatic number as the region itself. Hence, if the region
is bounded by internal as well as external surfaces, its eyclomatic
number is the sum of those due to all the surfaces.

When a region encloses within itself other regions, it is called a
Periphractic region.

The number of internal bounding surfaces of a region is called
its periphractic number. A closed surface is also periphractie, its
number being unity.

The cyclomatic number of a closed surface is twice that of the
region which it bounds. To find the cyclomatic number of a
bounded surface, suppose all the boundaries to contract inwards,
without breaking continuity, till they meet. The surface will then
be reduced to a point in the case of an acyclic surface, or to a linear
diagram in the case of eyclic surfaces. The cyclomatic number of
the diagram is that of the surface.

19.] TurorexM 1. If throughout any acyclic region
Xde+Ydy+Zdz =—D¥,
the value of the line-integral from a point A to a point P taken
along any path within the region will be the same.

‘We shall first shew that the line-integral taken round any closed
path within the region is zero.

Suppose the equipotential surfaces drawn. They are all either
closed surfaces or are bounded entirely by the surface of the region,
so that a closed line within the region, if it cuts any of the sur-
faces at one part of its path, must cut the same surface in the
opposite direction at some other part of its path, and the corre-
sponding portions of the line-integral being equal and opposite,
the total value is zero.

Hence if 4QP and AQ'P are two paths from 4 to P, the line-
integral for 4Q’P is the sum of that for 4Q P and the closed path

VOL. I c
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AQ'PQA. But the line-integral of the closed path is zero, there-
fore those of the two paths are equal. :

Hence if the potential is given at any onme point of such a
region, that at any other point is determinate.

20.]7 TaroreM I1. In a cyclic region in whick the equation
Xde+Ydy+Zde =—D¥
is everywhere fulfilled, the line-integral from A to P, along @
line drawn within the region, will not in general be determinate
unless the channel of communication between A and P be specified.

Let K be the cyclomatic number of the region, then K sections
of the region may be made by surfaces which we may ecall Dia-
phragms, so as to close up K of the channels of communication,
and reduce the region to an acyclic condition without destroying
its continuity.

The line-integral from 4 to any point P taken along a line
which does not cut any of these diaphragms will be, by the last
theorem, determinate in value.

Now let 4 and P be taken indefinitely near to each other, but
on opposite sides of a diaphragm, and let K be the line-integral
from 4 to P.

Let 4" and P’ be two other points on opposite sides of the same
diaphragm and indefinitely near to each other, and let K’ be the
line-integral from 4’ to . Then K'= K.

For if we draw 44" and PP, nearly coincident, but on opposite
sides of the diaphragm, the line-integrals along these lines will be
equal. Suppose each equal to Z, then the line-integral of 4'F is
equal to that of £/'4+ AP+ PP =—L+ K+ 1L = K = that of 4P.

Hence the line-integral round a closed curve which passes through
one diaphragm of the system in a given direction is a constant
quantity K. This quantity is called the Cyclic constant corre-
sponding to the given cycle.

Let any closed curve be drawn within the region, and let it cut
the diaphragm of the first cycle p times in the positive direction
and 7" times in the negative direction, and let p—p'=#,. Then
the line-integral of the closed curve will be #, K.

Similarly the line-integral of any closed curve will be

ny K+ 0, Ky+ ... +0g Ky
where ng represents the excess of the number of positive passages
of the curve through the diaphragm of the eycle K over the
number of negative passages.



21 | SURFACE-INTEGRALS. 19

If two curves are such that one of them may be transformed
into the other by continuous motion without at any time passing
through any part of space for which the condition of having a
potential is not fulfilled, these two curves are called Reconcileable
curves. Curves for which this transformation cannot be effected
are called Irreconcileable curves *.

The condition that Xdrz+ Ydy+ Zdz is a complete differential
of some function ¥ for all points within a certain region, occurs in
several physical investigations in which the directed quantity and
the potential have different physical interpretations.

In pure kinematics we may suppose X, ¥, Z to be the com-
ponents of the displacement of a point of a continuous body whose
original coordinates are @, 7, z, then the condition expresses that
these displacements constitute a non-rotational strain .

If X, Y, Z represent the components of the velocity of a fluid at
the point @, 7, 2, then the condition expresses that the motion of the
fluid is irrotational.

If X, ¥, Z represent the components of the force at the point
@, 7, 2, then the condition expresses that the work done on a
particle passing from one point to another is the difference of the
potentials at these points, and the value of this difference is the
same for all reconcileable paths between the two points.

Onr Surface-Integrals.
21.] Let d8 be the element of a surface, and e the angle which
a normal to the surface drawn towards the positive side of the
surface makes with the direction of the vector quantity Z, then

f R cos edS 1s called the surface-integral of R over the surface S.

TaeoreM III. The surface-integral of the flux through a closed
surfuce may be expressed as the volume-integral of its convergence
taken within the surface. (See Art. 25.)

Let X, ¥, Z be the components of £, and let 7, m, » be the

direction-cosines of the normal to § measured outwards. Then the
surface-integral of & over § is

ffR ooie B4 =ffxms+f/1’mds+ffznds
=ffXdydz+fdezdw+fdexdy,- (1

* See Sir W. Thomson ¢ On Vortex Motion,” Trans. R. S. Edin., 1869.
+ See Thomson and Tait’s Natural Philosophy, § 190 (2).

C 2
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the values of X, ¥, Z being those at a point in the surface, and
the integrations being extended over the whole surface.

If the surface is a closed one, then, when y and z are given,
the coordinate # must have an even number of values, since a line
parallel to # must enter and leave the enclosed space an equal
number of times provided it meets the surface at all.

Let a point travelling from # =—c to # = +oo first enter
the space when # = z;, then leave it when # = #,, and so on;
and let the values of X at these points be X, X,, &e., then

[[xayie= [[ (= X+ (X X 4 0.4 (Ko~ Ko D}y, (2)

If X is a quantity which is continuous, and has no infinite values
between #;, and ,, then

72 g X
XZ_X1=/;1 %dw, (3)

where the integration is extended from the first to the second
intersection, that is, along the first segment of # which is within
the closed surface. Taking into account all the segments which lie
within the closed surface, we find

ferZydz =f/f%§dmdydz, (1)

the double integration being confined to the closed surface, but
the triple integration being extended to the whole enclosed space.
Hence, if X, Y, Z are continuous and finite within a closed surface
8, the total surface-integral of 2 over that surface will be

//RcosedS_/ff i dy+‘flz)d 'z dy dz, (5)

the triple integration being extended over the whole space within S.

Let us next suppose that X, ¥, Z are not continuous within the
closed surface, but that at a certain surface F(z, y, 2) = 0 the
values of X, ¥, Z alter abruptly from X, ¥, Z on the negative side
of the surface to X’, ¥7, Z’ on the positive side.

If this discontinuity occurs, say, between #, and z,, the value
of X,— X, will be
[ s @- ), (6)
1
where in the expression under the integral sign only the finite
values of the derivative of X are to be considered.

In this case therefore the total surface-integral of I over the
closed surface will be expressed by
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fchosedS —ff./.([flf dY & )dzdydz+ff(X’ X)dy d»

+ff(Y’—Y) dz dz + ff(Z’—Z) dedy; (7)
or, if Z, m’, n’ are the direction-cosines of the normal to the surface
of discontinuity, and #S8” an element of that surface,

fchosedS...fff(dX L2 dz)rlxdydz

+ff {Z'(X'—X)+m'<f'—n+n'<Z'—Z>}dsz (8)
where the integration of the last term is to be extended over the
surface of discontinuity.

If at every point where X, ¥, Z are continuous
dX dY Y dZ _

and at every surface Where they are discontinuous
UX +w' Y +0'Z = UV X+m' Y +0'Z, (10)

then the surface-integral over every closed surface is zero, and the
distribution of the vector quantity is said to be Solenoidal.

We shall refer to equation (9) as the General solenoidal con-
dition, and to equation (10) as the Superficial solenoidal condition.

22.] Let us now consider the case in which at every point
within the surface § the equation

dX dY dZ

5 + -@ + A =0 (1 1)
is fulfilled. We have as a consequence of this the surface-integral
over the closed surface equal to zero.

Now let the closed surface S consist of three parts §;, §,, and
8,. Let S, be a surface of any form bounded by a closed line Z;.
Let 8, be formed by drawing lines from every point of L, always
coinciding with the direction of B. If I, m, n are the direction-
cosines of the normal at any point of the surface §;, we have

Reose =X+ Ym+Zn = 0. (12)
Hence this part of the surface contributes nothing towards the
value of the surface-integral.

Let 8, be another surface of any form bounded by the closed
curve L, in which it meets the surface S.

Let Q,, Q,, @, be the surface-integrals of the surfaces §,, Sy, S5,
and let Q be the surface-integral of the closed surface S. Then

Q=Q1+Q0+Q2=03 (13)
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and we know that Qy=0; (14)
therefore Q,=—Q:; (15)
or, in other words, the surface-integral over the surface S, is equal
and opposite to that over S, whatever be the form and position
of 8,, provided that the intermediate surface 8, is one for which B
is always tangential.

If we suppose L; a closed curve of small area, §, will be a
tubular surface having the property that the surface-integral over
every complete section of the tube is the same.

Since the whole space can he divided into tubes of this kind

rovided
. Gt E=0 (16)
a distribution of a vector quantity consistent with this equation is
called a Solenoidal Distribution.

On Tubes and Lines of Flow.

If the space is so divided into tubes that the surface-integral
for every tube is unity, the tubes are called Unit tubes, and the
surface-integral over any finite surface § bounded by a closed
curve L is equal to the number of such tubes which pass through
8§ in the positive direction, or, what is the same thing, the number
which pass through the elosed curve L.

Hence the surface-integral of § depends only on the form of
its boundary L, and not on the form of the surface within its
boundary.

On Periphractic Regions.

If, throughout the whole region bounded externally by the single
closed surface S, the solenoidal condition

dX dY dZ _
7Ry iy P

1s fulfilled, then the surface-integral taken over any closed surface
drawn within this region will be zero, and the surface-integral
taken over a bounded surface within the region will depend only
on the form of the closed curve which forms its boundary.

It is not, however, generally true that the same results follow
if the region within which the solenoidal condition is fulfilled is
bounded otherwise than by a single surface.

For if it is bounded by more than one continuous surface, one of

these is the external surface and the others are internal surfaces,
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and the region § is a periphractic region, having within it other
regions which it completely encloses.

If within any of these enclosed regions, §;, the solenoidal con-
dition is not fulfilled, let

lef/RcosedSl

be the surface-integral for the surface enclosing this region, and
let @,, @, &c. be the corresponding quantities for the other en-
closed regions.

Then, if a closed surface §” is drawn within the region S, the
value of its surface-integral will be zero only when this surface
8’ does not include any of the enclosed regions §;, §,, &e. If it
includes any of these, the surface-integral is the sum of the surface-
integrals of the different enclosed regions which lie within it.

For the same reason, the surface-integral taken over a surface
bounded by a closed curve is the same for such surfaces only bounded
by the closed curve as are reconcileable with the given surface by
continuous motion of the surface within the region §.

When we have to deal with a periphractic region, the first thing
to be done is to reduce it to an aperiphractic region by drawing
lines joining the different bounding surfaces. Each of these lines,
provided it joins surfaces which were not already in continuous
connexion, reduces the periphractic number by unity, so that the
whole number of lines to be drawn to remove the periphraxy is
equal to the periphractic number, or the number of internal sur-
faces. When these lines have been drawn we may assert that if
the solenoidal condition is fulfilled in the region S, any closed surface
drawn entirely within §, and not cutting any of the lines, has its
surface-integral zero.

In drawing these lines we must remember that any line joining
surfaces which are already connected does not diminish the peri-
phraxy, but introduces cyclosis.

The most familiar example of a periphractic region within which
the solenoidal condition is fulfilled is the region surrounding a mass
attracting or repelling inversely as the square of the distance.

In this case we have
X=n>, Y=nd, Z=mnZ;
rS TS rﬂ
where # is the mass supposed to be at the origin of coordinates.
At any point where 7 is finite
dX dY dZ
- = Zl—y— + > i 0,
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but at the origin these quantities become infinite. For any closed
surface not including the origin, the surface-integral is zero. If
a closed surface includes the origin, its surface-integral is 4 7.

If, for any reason, we wish to treat the region round = as if it
were not periphractic, we must draw a line from » to an infinite
distance, and in taking surface-integrals we must remember to add
4mm whenever this line crosses from the negative to the positive
side of the surface.

On Right-handed and Left-handed Relations in Space.

23.] In this treatise the motions of translation along any axis
and of rotation about that axis, will be assumed to be of the same
sign when their directions correspond to those of the translation
and rotation of an ordinary or right-handed serew *,

For instance, if the actual rotation of the earth from west to east
is taken positive, the direction of the earth’s axis from south to
north will be taken positive, and if a man walks forward in the
positive direction, the positive rotation is in the order, head, right-
hand, feet, left-hand.

If we place ourselves on the positive side of a surface, the positive
direction along its bounding curve will be opposite to the motion
of the hands of a watch with its face towards us.

This is the right-handed system which is adopted in Thomson
and Tait’s Notural Philosophy, § 243. The opposite, or left-handed
system, is adopted in Hamilton’s and Tait’s Quaternions. The
operation of passing from the one system to the other is called, by
Listing, Perversion.

The reflexion of an object in a mirror is a perverted image of the
object.

‘When we use the Cartesian axes of , 7, 2, we shall draw them

* The combined action of the muscles of the arm when we turn the upper side of
the right-hand outwards, and at the same time thrust the hand forwards, will
impress the right-handed screw motion on the memory more firmly than any verbal
definition, A common corkscrew may be used as a material symbol of the same
relation.

Professor W. H. Miller has suggested to me that as the tendrils of the vine are
right-handed screws and those of the hop left-handed, the two systems of relations in
space might be called those of the vine and the hop respectively.

The system of the vine, which we adopt, is that of Linneus, and of screw-makers
in all civilized countries except Japan. De Candolle was the first who called the
hop-tendril right-handed, and in this he is followed by Listing, and by most writers
on the rotatory polarization of light. Screws like the hop-tendril are made for the
couplings of railway-carriages, and for the fittings of wheels on the left side of ordinary
carriages, but they are always called left-handed screws by those who use them.
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so that the ordinary conventions about the eyclic order of the
symbols lead to a right-handed system of directions in space. Thus,
if # is drawn eastward and y northward, 2z must be drawn upward.
The areas of surfaces will be taken positive when the order of
integration coincides with the cyclic order of the symbols. Thus,
the area of a closed curve in the plane of #7 may be written either

fmd_y or —fydw;

the order of integration being @,  in the first expressmn and y,
in the second.

This relation between the two products drdy and dyde may
be compared with that between the products of two perpendicular
vectors in the doctrine of Quaternions, the sign of which depends
on the order of multiplication, and with the reversal of the sign
of a determinant when the adjoining rows or columns are ex-
changed.

For similar reasons a volume-integral is to be taken positive when
the order of integration is in the eyclic order of the variables z, 7, 2,
and negative when the cyclic order is reversed.

We now proceed to prove a theorem which is useful as esta-
blishing a connexion between the surface-integral taken over a
finite surface and a line-integral taken round its boundary.

R4.] TaeoreM IV. A line-integral taken round a closed curve
may be expressed in terms of a surface-integral taken over a
surface bounded by the curve.

Let X, ¥, Z be the components of a vector quantity 9 whose line-
integral is to be taken round a closed curve s.

Let § be any continuous finite surface bounded entirely by the
closed curve s, and let £ 7, ¢ be the components of another vector
quantity 9, related to X, ¥, Z by the equations

___dZ ay _dX dZ f_dY 2.9 3
= dy dz’ "T @ T da’ de ~ dy’ (1)
Then the surface-integral of 9B taken over the surface § is equal to
the line-integral of W taken round the curve s. It is manifest that
& n, ¢ fulfil of themselves the solenoidal condition
dé  dn  d{ _
p = + -@ -+ e

Let /, m, n be the direction-cosines of the normal to an element
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of the surface d§, reckoned in the positive direction. Then the
value of the surface-integral of 8 may be written

ff(l§+mn+n§)d:5'. (2)

In order to form a definite idea of the meaning of the element
d8, we shall suppose that the values of the coordinates w, g, z for
every point of the surface are given as functions of two inde-
pendent variables a and B. If 8 is constant and a varies, the point
(2, 7, 2) will describe a curve on the surface, and if a series of values
is given to B, a series of such curves will be traced, all lying on
the surface S. In the same way, by giving a series of constant
values to a, a second series of curves may be traced, cutting the
first series, and dividing the whole surface into elementary portions,
any one of which may be taken as the element d58.

The projection of this element on the plane of y, z is, by the
ordinary formula,

1d8 = (5~ - — =2 —a)dﬂda.' (3)

The expressions for mdS and #dS are obtained from this by sub-
stituting 2, 7, z in cyelic order.
The surface-integral which we have to find is

[[ag+my+nyas; ()
or, substituting the values of &, n, {in terms of X, ¥, Z,
cZX d dY aYy . dz  dZ
The part of thls whlch depends on X may be written

dX  dz de  dzdz dov dy  dv dy :
[f{dz %Jﬁ_d_gd_a)““(%@—@d—a)}dﬁda, (6)
dX do dr

adding and subtracting Tz da 36’ this becomes
ff dx dde dXdy {Z_J_Yﬁ)
178 ¢ z da ™ dy da T T Ta
dXde dX rZ_/ dX dz
(dx BYHaTE dp)}dﬁ i - «T)

dXds dX d ‘
=Gy d—’f) a8 de. ®

As we have made no assumption as to the form of the functions
o and 3, we may assume that o is a function of X, or, in other
words, that the curves for which a is constant are those for which
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X is constant. In this case %: 0, and the expression becomes

by integration with respect to o,

f ‘éxj‘;dﬁda —fX aB; (9)

where the integration is now to be performed round the closed
curve. Since all the quantities are now expressed in terms of one
variable 3, we may make s, the length of the bounding curve, the
independent variable, and the expression may then be written

fX—-ds (10)

where the integration is to be performed round the curves. We
may treat in the same way the parts of the surface-integral which
depend upon ¥ and Z, so that we get finally,

f/(l£+mn+n§)d5 f(X +Ydy+Z )ds; (1)

where the first integral is extended over the surf'ace S, and the
second round the bounding curve s *.

On the effect of the operator V on a vector function.

25.] We have seen that the operation denoted by V is that by
which a vector quantity is deduced from its potential. The same
operation, however, when applied to a vector function, produces
results which enter into the two theorems we have just proved
(III and IV). The extension of this operator to vector displacements,
and most of its further development, is due to Professor Tait .

Let o be a vector function of p, the vector of a variable point.
Let us suppose, as usual, that

=iz+jy+ke,
and c=1X+jY+kZ;
where X, ¥, Z are the components of ¢ in the directions of the
axes.
We have to perform on ¢ the operation
&=, d d
Vit e
Performing this operation, and remembenng the rules for the

* This theorem was given by Professor Stokes, Smith’s Prize Examination, 1854,
question 8. It is proved in Thomson and Tait's Natural Philosopky, § 190 (j).

+ See Proc. R. S. Edin., April 28, 1862. ‘On Green’s and other allied Theorems,’
Trans. R. S. Edin., 1869- 70, a very valuable paper; and ‘On some Quaternion
Xategrals,’ Proc. R. S. Edin., 1870-71.
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multiplication of 4, j, £, we find that Vo consists of two parts,
one scalar and the other vector.

The scalar part is

dX dY dZ

e + + ) see Theorem II1,
and the vector part is

B %Al X Sl A% B
iy v mes &)t — )+ (G =R

If the relation between X, ¥, Z and & m, ¢ is that given by

equation (1) of the last theorem, we may write
VVve=1ié+jn+%{ See Theorem IV.

It appears therefore that the functions of X, ¥, Z which occur
in the two theorems are both obtained by the operation V on the
vector whose components are X, ¥, Z. The theorems themselves
may be written

[[[svoas = [[s.cvvas, am

i fS”dP =f/S.VcUuds; (IV)

where ds is an element of a volume, ds of a surface, dp of a curve,
and Uy a unit-vector in the direction of the normal.
To understand the meaning of these functions of a vector, let us
suppose that o, is the value of o at a point P, and let us examine
the value of o—o, in the neighbourhood of P.
l If we draw a closed surface round P, then, if the
\ / surface-integral of o over this surface is directed
inwards, § V ¢ will be positive, and the vector
% B T oc—0o, near the point P will be on the whole
S N directed towards P, as in the figure (1).
T I propose therefore to call the scalar part of
Fig. 1. V o the convergence of o at the point P.
To interpret the vector part of Vo, let us
suppose ourselves to be looking in the direction of the vector
whose components are & 7, ¢ and let us examine
== the vector o —o, near the point P. It will appear
l . T as in the figure (2), this vector being arranged on
the whole tangentially in the direction opposite to
the hands of a watch. :
I propose (with great diffidence) to call the vector
part of Vo the curl, or the version of o at the point P.

SVo=—

—_—

Fig. 2.
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At Fig. 3 we have an illustration of curl combined with con-
vergence.

Let us now consider the meaning of the equation
Vve = 0. \ /
This implies that V¢ is a scalar, or that the vector ’ \
o is the slope of some scalar function ¥. These /

applications of the operator V are due to Professor
Tait ¥, A more complete development of the theory
is given in his paper ‘On Green’s and other allied Theorems t,’
to which I refer the reader for the purely Quaternion investigation
of the properties of the operator V.

26.] One of the most remarkable properties of the operator V is
that when repeated it becomes
Y I
a2 T b 2 (—1?)’
an operator occurring in all parts of Physics, which we may refer to
as Laplace’s Operator.

This operator is itself essentially scalar. When it acts on a
scalar function the result is scalar, when it acts on a vector function
the result is a vector.

If, with any point P as centre, we draw a small sphere whose
radius is 7, then if ¢, is the value of ¢ at the centre, and g the
mean value of ¢ for all points within the sphere,

%o—9 =157 V' ¢;
so that the value at the centre exceeds or falls short of the mean
value according as V?2g¢ is positive or negative.

I propose therefore to call V2¢ the concentration of ¢ at the
point P, because it indicates the excess of the value of 4 at that
point over its mean value in the neighbourhood of the point.

If ¢ is a scalar function, the method of finding its mean value is
well known. If it is a vector function, we must find its mean
value by the rules for integrating vector functions. The result
of course is a vector.

Fig. 3.

vz=—(

* Proceedings R. S. Edin., 1862. + Trans. R. S. Edin., 1869-70.



PART I

ELECTROSTATICS.

CHAPTER L

DESCRIPTION OF PHENOMENA,

Electrification by Friction.

27.] ExperiMENT 1%, Let a piece of glass and a piece of resin,
neither of which exhibits any electrical properties, be rubbed to-
gether and left with the rubbed surfaces in contact. They will
still exhibit no electrical properties. Let them be separated. They
will now attract each other.

If a second piece of glass be rubbed with a second piece of
resin, and if the pieces be then separated and suspended in the
neighbourhood of the former pieces of glass and resin, it may be
observed—

(1) That the two pieces of glass repel each other.
(2) That each piece of glass attracts each piece of resin.
(3) That the two pieces of resin repel each other.

These phenomena of attraction and repulsion are called Elec-
trical phenomena, and the bodies which exhibit them are said to
be electrified, or to be charged with electricity.

Bodies may be electrified in many other ways, as well as by
friction.

The electrical properties of the two pieces of glass are similar
to each other but opposite to those of the two pieces of resin,
the glass attracts what the resin repels and repels what the resin
attracts.

* See Sir W. Thomson ‘On the Mathematical Theory of Electricity,” Cambridge
and Dublin Mathematical Journal, March, 1848.
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If a body electrified in any manner whatever behaves as the
glass does, that is, if it repels the glass and attracts the resin, the
body is said to be vifreously electrified, and if it attracts the glass
and repels the resin it is said to be resinously electrified. All
electrified bodies are found to be either vitreously or resinously
electrified.

Tt is the established practice of men of science to call the vitreous
electrification positive, and the resinous electrification negative.
The exactly opposite properties of the two kinds of electrification
justify us in indicating them by opposite signs, but the applica-
tion of the positive sign to one rather than to the other kind must
be considered as a matter of arbitrary convention, just as it is a
matter of convention in mathematical diagrams to reckon positive .
distances towards the right hand.

No force, either of attraction or of repulsion, can be observed
between an electrified body and a body not electrified. When, in
any case, hodies not previously electrified are observed to be acted
on by an electrified body, it is because they have become electrified
by induction.

Llectrification by Induction.

28.] ExpEriMENT IT*. Let a hollow vessel of metal be hung
up by white silk threads, and let a similar thread
be attached to the lid of the vessel so that the vessel
may be opened or closed without touching it.

Let the pieces of glass and resin be similarly sus-
pended and electrified as before.

Let the vessel be originally unelectrified, then if
an electrified piece of glass is hung up within it by
its thread without touching the vessel, and the lid
closed, the outside of the vessel will be found to
be vitreously electrified, and it may be shewn that
the electrification outside of the vessel is exactly the
same in whatever part of the interior space the glass
1s suspended.

If the glass is now taken out of the vessel without touching it,
the electrification of the glass will be the same as before it was
put in, and that of the vessel will have disappeared.

This electrification of the vessel, which depends on the glass

Fig. 4.

* This, and several experiments which follow, are due to Faraday, ¢ On Static
Electrical Inductive Action,’ Phil. Mag., 1843, or Exp. Res., vol. ii. p. 279.
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being within it, and which vanishes when the glass is removed, is
called Electrification by induction.

Similar effects would be produced if the glass were suspended
near the vessel on the outside, but in that case we should find
an electrification vitreous in one part of the outside of the vessel
and resinous in another. When the glass is inside the vessel
the whole of the outside is vitreously and the whole of the inside
resinously electrified.

Electrification by Conduction.

29.] ExperiMENT III. Let the metal vessel be electrified by
induction, as in the last experiment, let a second metallic body
-be suspended by white silk threads near it, and let a metal wire,
similarly suspended, be brought so as to touch simultaneously the
electrified vessel and the second body. .

The second body will now be found to be vitreously electrified,
and the vitreous electrification of the vessel will have diminished.

The electrical condition has been transferred from the vessél to
the second body by means of the wire. The wire is called a con-
ductor of electricity, and the second body is said to be electrified
by conduction.

Conductors and Insulators.

Experivent IV, If a glass rod, a stick of resin or gutta-percha,
or a white silk thread, had been used instead of the metal wire, no
transfer of electricity would have taken place. Hence these latter
substances are called Non-conductors of electricity. Non-conduc-
tors are used in electrical experiments to support electrified bodies
without carrying off their electricity. They are then called In-
sulators. ‘

The metals are good conductors ; air, glass, resins, gutta-percha,
vuleanite, paraffin, &c. are good insulators; but, as we shall see
afterwards, all substances resist the passage of electricity, and all
substances allow it to pass, though in exceedingly different degrees.
This subject will be considered when we come to treat of the
Motion of electricity. For the present we shall consider only two
classes of bodies, good conductors, and good insulators.

In Experiment II an electrified body produced electrification in
the metal vessel while separated from it by air, a non-conducting
medium. Such a medium, considered as transmitting these electrical
effects without conduction, has been called by Faraday a Dielectric



31.] SUMMATION OF ELECTRIC EFFECTS. 33

medium, and the action which takes place through it is called
Induction.

In Experiment IIT the electrified vessel produced electrification
in the second metallic body through the medium of the wire. Let
us suppose the wire removed, and the electrified piece of glass taken
out of the vessel without touching it, and removed to a sufficient
distance. The second body will still exhibit vitreous electrifica-
tion, but the vessel, when the glass is removed, will have resinous
electrification. If we now bring the wire ‘into contact with both
bodies, conduction will take place along the wire, and all electri-
fication will disappear from both bodies, shewing that the elec-
trification of the two bodies was equal and opposite.

30.] ExperriMENT V. In Experiment II it was shewn that if
a piece of glass, electrified by rubbing it with resin, is hung up in
an insulated metal vessel, the electrification observed outside does
not depend on the position of the glass. If we now introduce the
piece of resin with which the glass was rubbed into the same vessel,
without touching it or the vessel, it will be found that there is
no electrification outside the vessel. From this we conclude that
the electrification of the resin is exactly equal and opposite to that
of the glass. By putting in any number of bodies, electrified in
~ any way, it may be shewn that the electrification of the outside of
the vessel is that due to the algebraic sum of all the electrifica-
tions, those being reckoned negative which are resinous. We have
thus a practical method of adding the electrical effects of several
bodies without altering the electrification of each.

81.] ExperiMENT VI. Let a second insulated metallic vessel, B,
be provided, and let the electrified piece of glass be put into the
first vessel 4, and the electrified piece of resin into the second vessel
B. Let the two vessels be then put in communication by the metal
wire, as in Experiment ITI. All signs of electrification will dis-
appear.

Next, let the wire be removed, and let the pieces of glass and of
resin be taken out of the vessels without touching them. It will
be found that 4 is electrified resinously and B vitreously.

If now the glass and the vessel 4 be introduced together into a
larger insulated vessel C, it will be found that there is no elec-
trification outside C. This shews that the electrification of 4 is
exactly equal and opposite to that of the piece of glass, and that
of B may be shewn in the same way to be equal and oppos1te to that
of the piece of resin.

VOL. 1. D



34 ELECTROSTATIC PHENOMENA. [32:

We have thus obtained a method of charging a vessel with a
quantity of electricity exactly equal and opposite to that of an
electrified body without altering the electrification of the latter,
and we may in this way charge any number of vessels with exactly
equal quantities of electricity of either kind, which we may take
for provisional units.

32.] ExperiMENT VII. Let the vessel B, charged with a quan-
tity of positive electricity, which we shall call, for the present,
unity, be introduced into the larger insulated vessel C without
touching it. It will produce a positive electrification on the out-
side of C. Now let B be made to touch the inside of C. No change
of the external electrification will be observed. If B is now taken
out of C without touching it, and removed to a sufficient distance,
it will be found that B is completely discharged, and that C has
become charged with a unit of positive electricity.

We have thus a method of transferring the charge of B to C.

Let B be now recharged with a unit of electricity, introduced
into C already charged, made to touch the inside of C, and re-
moved. It will be found that B is again completely discharged,
so that the charge of C is doubled.

If this process is repeated, it will be found that however highly
C is previously charged, and in whatever way B is charged, when
B is first entirely enclosed in C, then made to touch C, and finally
removed without touching C, the charge of 5 is completely trans-
ferred to C, and B is entirely free from electrification.

This experiment indicates a method of charging a body with
any number of units of electricity. ~We shall find, when we come
to the mathematical theory of electricity, that the result of this
experiment affords an accurate test of the truth of the theory.

33.] Before we proceed to the investigation of the law of
electrical force, let us enumerate the facts we have already esta-
blished.

By placing any electrified system inside an insulated hollow con-
ducting vessel, and examining the resultant effect on the outside
of the vessel, we ascertain the character of the total electrification
of the system placed inside, without any communication of elec-
tricity between the different bodies of the system.

The electrification of the outside of the vessel may be tested
with great delicacy by putting it in communication with an elec-
troscope.

We may suppose the electroscope to consist of a strip of gold
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leaf hanging between two bodies charged, one positively, and the
other negatively. If the gold leaf becomes electrified it will incline
towards the body whose electrification is opposite to its own. By
increasing the electrification of the two bodies and the delicacy of
the suspension, an exceedingly small electrification of the gold leaf
may be detected.

When we come to describe electrometers and multipliers we
shall find that there are still more delicate methods of detecting
electrification and of testing the accuracy of our theorems, but at
present we shall suppose the testing to be made by connecting the
hollow vessel with a gold leaf electroscope.

This method was used by Faraday in his very admirable de-
monstration of the laws of electrical phenomena *.

34.] 1. The total electrification of a body, or system of bodies,
remains always the same, except in so far as it receives electrifi-
cation from or gives electrification to other bodies.

In all electrical experiments the electrification of bodies is found

. to change, but it is always found that this change is due to want

of perfect insulation, and that as the means of insulation are im-
proved, the loss of electrification becomes less. We may therefore
assert that the electrification of a body placed in a perfectly in-
sulating medium would remain perfectly constant.

II. When one body electrifies another by conduction, the total
electrification of the two bodies remains the same, that is, the one
loses as much positive or gains as much negative electrification as
the other gains of positive or loses of negative electrification.

For if the two bodies are enclosed in the hollow vessel, no change
of the total electrification is observed.

III. When electrification is produced by friction, or by any
other known method, equal quantities of positive and negative elec-
trification are produced.

For the electrification of the whole system may be tested in
the hollow vessel, or the process of electrification may be carried
on within the vessel itself, and however intense the electrification of
the parts of the system may be, the electrification of the whole,
as indicated by the gold leaf electroscope, is invariably zero.

The electrification of a body is therefore a physical quantity
capable of measurement, and two or more electrifications can be
combined experimentally with a result of the same kind as when

* ¢ On Static Electrical Inductive Action,” Pkil. Mayg., 1843, or Exp. Res., vol. ii.
p- 249
D2
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two quantities are added algebraically. We therefore are entitled
to use language fitted to deal with electrification as a quantity as
well as a quality, and to speak of any electrified body as ¢ charged
with a certain quantity of positive or negative electricity.’

85.] While admitting electricity, as we have now done, to the
rank of a physical quantity, we must not too hastily assume that
it is, or is not, a substance, or that it is, or is not, a form of
energy, or that it belongs to any known category of physical
quantities. All that we have hitherto proved is that it cannot
be created or annihilated, so that if the total quantity of elec-
tricity within a closed surface is increased or diminished, the in-
crease or diminution must have passed in or out through the closed
surface.

This is true of matter, and is expressed by the equation known as
the Equation of Continuity in Hydrodynamies.

It is not true of heat, for heat may be increased or diminished
within a closed surface, without passing in or out through the
surface, by the transformation of some other form of energy into
heat, or of heat into some other form of energy.

It is not true even of energy in general if we admit the imme-
diate action of bodies at a distance. For a body outside the closed
surface may make an exchange of energy with a body within
the surface. But if all apparent action at a distance is the
result of the action between the parts of an intervening medium,
and if the nature of this action of the parts of the medium is
clearly understood, then it is conceivable that in all cases of the
increase or diminution of the energy within a closed surface we
may be able to trace the passage of the energy in or out through
that surface.

There is, however, another reason which warrants us in asserting
that electricity, as a physical quantity, synonymous with the total
electrification of a body, is not, like heat, a form of energy. An
electrified system has a certain amount of energy, and this energy
can be calculated by multiplying the quantity of electricity in
each of its parts by another physical quantity, called the Potential
of that part, and taking half the sum of the products. The quan-
tities ¢ Electricity’ and ¢ Potential,” when multiplied together,
produce the quantity ¢Energy.’ It is impossible, therefore, that
electricity and energy should be quantities of the same category, for

electricity- is only one of the factors of energy, the other factor
being ¢ Potential.’



36.] THEORIES OF ELECTRICITY. 37

Energy, which is the product of these factors, may also be con-
sidered as the product of several other pairs of factors, such as

A Force x A distance through which the foree is to act.
A Mass x Gravitation acting through a certain height.
A Mass x Half the square of its velocity.

A Pressure x A volume of fluid introduced into a vessel at

- that pressure.
A Chemical Affinity x A chemical change, measured by the number
of electro-chemical equivalents which enter
into combination.

If we obtain distinet mechanical ideas of the nature of electric
potential, we may combine these with the idea of energy to
determine the physical category in which ¢ Electricity’ is to be
placed.

36.] In most theories on the subject, Electricity is treated as
a substance, but inasmuch as there are two kinds of electrification
which, being combined, annul each other, and since we cannot
conceive of two substances annulling each other, a distinction has
been drawn between Free Electricity and Combined Electricity.

Theory of Two Fluids.

In the theory called that of Two Fluids, all bodies, in their
unelectrified state, are supposed to be charged with equal quan-
tities of positive and negative electricity. These quantities are
supposed to be so great that no process of electrification has ever
yet deprived a body of all the electricity of either kind. 'The pro-
cess of electrification, according to this theory, consists in taking
a certain quantity P of positive electricity from the body 4 and
communicating it to B, or in taking a quantity N of negative
electricity from B and communicating it to 4, or in some com-
bination of these processes.

The result will be that 4 will have £+ NN units of negative
electricity over and above its remaining positive electricity, which
is supposed to be in a state of combination with an equal quantity
of negative electricity. This quantity P+ N is called the Free
electricity, the rest is called the Combined, Latent, or Fixed elec-
tricity.

In most expositions of this theory the two electricities are called
¢ Fluids,” because they are capable of being transferred from one
body to another, and are, within conducting bodies, extremely
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mobile. The other properties of fluids, such as their inertia,
weight, and elasticity, are not attributed to them by those who
have used the theory for merely mathematical purposes; but the
use of the word Fluid has been apt to mislead the vulgar, including
many men of science who are not natural philosophers, and who
have seized on the word Fluid as the only term in the statement
of the theory which seemed intelligible to them.

We shall see that the mathematical treatment of the subject has
been greatly developed by writers who express themselves in terms
of the Two Fluids’ theory.. Their results, however, have been
deduced entirely from data which can be proved by experiment,
and which must therefore be true, whether we adopt the theory of
two fluids or not. The experimental verification of the mathe-
matical results therefore is no evidence for or against the peculiar
doctrines of this theory.

The introduction of two fluids permits us to consider the negative
electrification of 4 and the positive electrification of B as the effect
of any one of three different processes which would lead to the same
result. We have already supposed it produced by the transfer of
P units of positive electricity from 4 to B, together with the
transfer of & units of negative electricity from B to 4. But if
P+ N units of positive electricity had been transferred from A4
to B, or if P+ NV units of negative electricity had been transferred
from B to 4, the resulting ¢ free electricity’ on 4 and on B would
have been the same as before, but the quantity of ¢combined
electricity’ in 4 would have been less in the second case and greater
in the third than it was in the first.

It would appear therefore, according to this theory, that it is
possible to alter not only the amount of free electricity in a body,
but the amount of combined electricity. But no phenomena have
ever been observed in electrified bodies which can be traced to the
varying amount of their combined electricities. Hence either the
combined electricities have no observable properties, or the amount
of the combined electricities is incapable of variation. The first
of these alternatives presents no difficulty to the mere mathema-
tician, who attributes no properties to the fluids except those of
.attraction and repulsion, for in this point of view the two fluids
simply annul one another, and their combination is a true mathe-
matical zero. But to those who cannot use the word Fluid without
thinking of a substance it is difficult to conceive that the com-
bination of the two fluids shall have no properties at all, so that
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the addition of more or less of the combination to a body shall not
in any way affect it, either by increasing its mass or its weight, or
altering some of its other properties. Hence it has been supposed
by some, that in every process of electrification exactly equal quan-
tities of the two fluids are transferred in opposite directions, so
that the total quantity of the two fluids in any body taken to-
gether remains always the same. By this new law they ¢ contrive
to save appearances,’” forgetting that there would have been no need
of the law except to reconcile the ‘two fluids’ theory with facts,
and to prevent it from predicting non-existent phenomena.

Theory of One Fluid.

37.] In the theory of One Fluid everything is the same as in
the theory of Two Fluids except that, instead of supposing the two
substances equal and opposite in all respects, one of them, gene-
rally the negative one, has been endowed with the properties and
name of Ordinary Matter, while the other retains the name of The
Electric Fluid. The particles of the fluid are supposed to repel
one another according to the law of the inverse square of the
distance, and to attract those of matter according to the same
law. Those of matter are supposed to repel each other and attract
those of electricity. The attraction, however, between units of the
different substances at unit of distance is supposed to be a very little
greater than the repulsion between units of the same kind, so that
a unit of matter combined with a unit of electricity will exert a
force of attraction on a similar combination at a distance, this
force, however, being exceedingly small compared with the force
between two uncombined units.

This residual force is supposed to account for the attraction of
gravitation. Unelectrified bodies are supposed to be charged with
as many units of electricity as they contain of ordinary matter.
When they contain more electricity or less, they are said to be
positively or negatively electrified.

This theory does not, like the Two-Fluid theory, explain too
much. It requires us, however, to suppose the mass of the electric
fluid so small that no attainable positive or negative electrification
has yet perceptibly increased or diminished either the mass or the
weight of a body, and it has not yet been able to assign sufficient
reasons why the vitreous rather than the resinous electrification
should be supposed due to an excess of electricity.

One objection has sometimes been urged against this theory by
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men who ought to have reasoned better. It has been said that
the doctrine that the particles of matter uncombined with elec-
tricity repel one another, is in direct antagonism with the well-
established fact that every particle of matter atfracts every other
particle throughout the universe. If the theory of One Fluid were
true we should have the heavenly bodies repelling one another.

But it is manifest that the heavenly bodies, according to this
theory, if they consisted of matter uncombined with electricity,
would be in the highest state of negative electrification, and would
repel each other. We have no reason to believe that they are in
such a highly electrified state, or could be maintained in that
state. The earth and all the bodies whose attraction has been
observed are rather in an unelectrified state, that is, they contain
the normal charge of electricity, and the only action between them
is the residual force lately mentioned. The artificial manner, how-
ever, in which this residual force is introduced is a much more
valid objection to the theory.

In the present treatise I propose, at different stages of the in-
vestigation, to test the different theories in the light of additional
classes of phenomena. For my own part, I look for additional
light on the nature of electricity from a study of what takes place
in the space intervening between the electrified bodies. Such is the
essential character of the mode of investigation pursued by Faraday
in his Experimental Researches, and as we go on I intend to exhibit
the results, as developed by Faraday, W. Thomson, &c., in a con-
nected and mathematical form, so that we may perceive what
phenomena are explained equally well by all the theories, and what
phenomena indicate the peculiar difficulties of each theory.

Measurement of the Force between Electrified Bodies.

38.] Forces may be measured in various ways. For instance,
one of the bodies may be suspended from one arm of a delicate
balance, and weights suspended from the other arm, till the body,
when unelectrified, is in equilibrium. The other body may then
be placed at a known distance beneath the first, so that the
attraction or repulsion of the bodies when electrified may increase
or diminish the apparent weight of the first. The weight which
must be added to or taken from the other arm, when expressed
in dynamical measure, will measure the force between the bodies.
This arrangement was used by Sir W. Snow Harris, and is that
adopted in Sir W. Thomson’s absolute electrometers. See Art. 217.
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It is sometimes more convenient to use a torsion-balance in
which a horizontal arm is suspended by a fine wire or fibre, so as
to be capable of vibrating about the vertical wire as an axis, and
the body is attached to one end of the arm and acted on by the
force in the tangential direction, so as to turn the arm round the
vertical axis, and so twist the suspension wire through a certain
angle. The torsional rigidity of the wire is found by observing
the time of oscillation of the arm, the moment of inertia of the
arm being otherwise known, and from the angle of torsion and
the torsional rigidity the force of attraction or repulsion can be
deduced. The torsion-balance was devised by Michell for the de-
termination of the force of gravitation between small bodies, and
was used by Cavendish for this purpose. Coulomb, working in-
dependently of these philosophers, reinvented it, and successfully
applied it to discover the laws of electric and magnetic forces;
and the torsion-balance has ever since been used in all researches
where small forces have to be measured. See Art. 215.
 89.] Let us suppose that by either of these methods we can
measure the force between two electrified bodies. We shall suppose
the dimensions of the bodies small compared with the distance
between them, so that the result may not be much altered by
any inequality of distribution of the electrification on either body,
and we shall suppose that both bodies are so suspended in air as
to be at a considerable distance from other bodies on which they
might induce electrification.

It is then found that if the bodies are placed at a fixed distance
and charged respectively with ¢ and ¢ of our provisional units of
electricity, they will repel each other with a force proportional
to the product of ¢ and ¢. If either e or ¢ is negative, that is,
if one of the charges is vitreous and the other resinous, the force
will be attractive, but if both ¢ and ¢ are negative the force is again
repulsive.

We may suppose the first body, 4, charged with = units of
vitreous and # units of resinous electricity, which may be con-
ceived separately placed within the body, as in Experiment V.

Let the second body, B, be charged with #” units of positive
and 7’ units of negative electricity.

Then each of the m positive units in 4 will repel each of the m’
positive units in B with a certain force, say /, making a total effect
equal to muf.

Since the effect of negative electricity is exactly equal and
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opposite to that of positive electricity, each of the » positive units
in 4 will attract each of the #” negative units in B with the same
force £, making a total effect equal to mnf.

Similarly the » negative units in 4 will attract the »” positive
units in B with a force nm'f, and will repel the #” negative units
in B with a force nu’f.

The total repulsion will therefore be (mm’+ nn’)f; and the total
attraction will be (mn”+ m'n)f.

The resultant repulsion will be

(man + 0’ —mn’ —nm’) f or  (m—n) (m’—n")f.

Now m—n = e is the algebraical value of the charge on 4, and

m’ —n’= ¢ is that of the charge on B, so that the resultant re-

pulsion may be written e¢’f, the quantities ¢ and ¢ being always
understood to be taken with their proper signs.

Variation of the Force with the Distance.

40.] Having established the law of force at a fixed distance,
we may measure the force between bodies charged in a constant
manner and placed at different distances. It is found by direct
measurement that the force, whether of attraction or repulsion,
varies inversely as the square of the distance, so that if £ is the
repulsion between two units at unit distance, the repulsion at dis-
tance 7 will be f7~2, and the general expression for the repulsion
between ¢ units and ¢ units at distance 7 will be

FReL =

Definition of the Electrostatic Unit of Electricity.

41.] We have hitherto used a wholly arbitrary standard for our
unit of electricity, namely, the electrification of a certain piece of
glass as it happened to be electrified at the commencement of our
experiments. We are now able to select a unit on a definite prin-
ciple, and in order that this unit may belong to a general system
we define it so that / may be unity, or in other words—

The electrostatic unit of electricity is that quantity of electricity
which, when placed at unit of distance from an equal quantity, repels
it with unit of force.

This unit is called the Electrostatic- unit to distinguish it from
the Electromagnetic unit, to be afterwards defined.

We may now write the general law of electrical action in the

simple form F=cedr2; or
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The repulsion between two small bodies charged respectively with e and
¢ units of electricity is numerically equal to the product of the charges
divided by the square of the distance.

Dimensions of the Electrostatic Unit of Quantity.

42.] If [Q] is the concrete electrostatic unit of quantity itself,
and e, ¢’ the numerical values of particular quantities; if [Z] is
the unit of length, and » the numerical value of the distance; and
if [#] is the unit of force, and # the numerical value of the force,
then the equation becomes . ;

F[F] = edr2 [Q°] [L*);
whence [Q] = [ZFY]
= [LgT“ﬂ[%].

This unit is called the Electrostatic Unit of electricity. Other
units may be employed for practical purposes, and in other depart-
ments of electrical science, but in the equations of electrostatics
quantities of electricity are understood to be estimated in electro-
static units, just as in physical astronomy we employ a unit of

mass which is founded on the phenomena of gravitation, and which
differs from the units of mass in common use.

Proof of the Law of Electrical Force.

43.] The experiments of Coulomb with the torsion-balance may
be considered to have established the law of force with a certain
approximation to accuracy. Experiments of this kind, however,
are rendered difficult, and in some degree uncertain, by several
disturbing causes, which must be carefully traced and corrected for.

In the first place, the two electrified bodies must be of sensible
dimensions relative to the distance between them, in order to be
capable of carrying charges sufficient to produce measurable forces.
The action of each body will then produce an effect on the dis-
tribution of electricity on the other, so that the charge cannot be
considered as evenly distributed over the surface, or collected at
the centre of gravity; but its effect must be calculated by an
intricate investigation. This, however, has been done as regards
two spheres by Poisson in an extremely able manner, and the
investigation has been greatly simplified by Sir W. Thomson in
his Tkcory of Electrical Images. See Arts. 172-174.

Another difficulty arises from the action of the electricity
induced on the sides of the case containing the instrument. By
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making the inside of the instrument accurately eylindric, and
making its inner surface of metal, this effect can be rendered
definite and measurable.

An independent difficulty arises from the imperfect insulation
of the bodies, on account of which the charge continually de-
creases. Coulomb investigated the law of dissipation, and made
corrections for it in his experiments.

The methods of insulating charged conductors, and of measuring
electrical effects, have been greatly improved since the time of
Coulomb, particularly by Sir W. Thomson; but the perfect ac-
curacy of Coulomb’s law of force is established, not by any direct
experiments and measurements (which may be used as illustrations
of the law), but by a mathematical consideration of the pheno-
menon described as Experiment VII, namely, that an electrified
conductor B, if made to touch the inside of a hollow closed con-
ductor C and then withdrawn without touching C, is perfectly dis-
charged, in whatever manner the outside of C may be electrified.
By means of delicate electroscopes it is easy to shew that no
electricity remains on B after the operation, and by the mathe-
matical theory given at Art. 74, this can only be the case if the
force varies inversely as the square of the distance, for if the law
had been of any different form B would have been electrified.

The Electric Field.

44.] The Electric Field is the portion of space in the neigh-
bourhood of electrified bodies, considered with reference to electric
phenomena. It may be occupied by air or other bodies, or it
may be a so-called vacuum, from which we have withdrawn every
substance which we can act upon with the means at our dis-
posal.

If an electrified body be placed at any part of the electric field
it will be acted on by a force which will depend, in general, on
the shape of the body and on its eharge, if the body is so highly
charged as to produce a sensible disturbance in the previous elec-
trification of the other bodies.

But if the body is very small and its charge also very small,
the electrification of the other bodies will not be sensibly disturbed,
and we may consider the body as indicating by its centre of gravity
a certain point of the field. The force acting on the body will
then be proportional to its charge, and will be reversed when the
charge is reversed.
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Let ¢ be the charge of the body, and F the force acting on the
body in a certain direction, then when ¢ is very small ¥ is propor-
tional to ¢, or F = Re,

where R is a quantity depending on the other bodies in the field.
If the charge ¢ could be made equal to unity without disturbing
the electrification of other bodies we should have ¥ = R.

‘We shall call 2 the Resultant electric force at the given point
of the field.

Electric Potential.

45.] If the small body carrying the small charge e be moved
from the given point to an indefinite distance from the electrified
bodies, it will experience at each point of its course a force Re,
where R varies from point to point of the course. Let the whole
work done on the body by these electrical forces be Ve, then 7 is
the potential at the point of the field from which the body started.
If the charge e could be made equal to unity without disturbing
the electrification of other bodies, we might define the potential at
any point as the work done on a body charged with unit of elec-
tricity in moving from that point to an infinite distance.

A body electrified positively tends to move from places of greater
positive potential to places of smaller positive, or of negative
potential, and a body negatively electrified tends to move in the
opposite direction.

In a conductor the electrification is distributed exactly as if
it were free to move in the conductor according to the same law.
If therefore two parts of a conductor have different potentials,
positive electricity will move from the part having greater potential
to the part having less potential as long as that difference con-
tinues. A conductor therefore cannot be in electrical equilibrium
unless every point in it has the same potential. This potential is
called the Potential of the Conductor.

Equipotential Surfaces.

46.] If a surface described or supposed to be described in the
electric field is such that the electric potential is the same at every
point of the surface it is called an Equipotential surface.

An electrified point constrained to rest upon such a surface will
have no tendency to move from one part of the surface to another,
because the potential is the same at every point. An equipotential
surface is therefore a surface of equilibrium or a level surface.
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The resultant force at any point of the surface is in the direction
of the normal to the surface, and the magnitude of the force is such
that the work done on an electrical unit in passing from the surface
F to the surface F is F— 7.

No two equipotential surfaces having different potentials can
meet one another, because the same point cannot have more than
one potential, but one equipotential surface may meet itself, and
this takes place at all points and Lines of equilibrium.

The surface of a conductor in electrical equilibrium is necessarily
an equipotential surface. If the electrification of the conductor is
positive over the whole surface, then the potential will diminish as
we move away from the surface on every side, and the eonductor
will be surrounded by a series of surfaces of lower potential.

But if (owing to the action of external electrified bodies) some
regions of the conductor are electrified positively and others ne-
gatively, the complete equipotential surface will consist of the
surface of the conductor itself together with a system of other
surfaces, meeting the surface of the conductor in the lines which
divide the positive from the negative regions. These lines will
be lines of equilibrium, so that an electrified point placed on one
of these lines will experience no force in any direction.

‘When the surface of a conductor is electrified positively in some
parts and negatively in others, there must be some other electrified
body in the field besides itself. For if we allow a positively
electrified point, starting from a positively electrified part of the
surface, to move always in the direction of the resultant force upon
it, the potential at the point will continually diminish till the point
reaches either a negatively electrified surface at a potential less than
that of the first conductor, or moves off to an infinite distance.
Since the potential at an infinite distance is zero, the latter case
can only occur when the potential of the conductor is positive.

In the same way a negatively electrified point, moving off from
2 negatively electrified part of the surface, must either reach a posi-
tively electrified surface, or pass off to infinity, and the latter case
can only happen when the potential of the conductor is negative.

Therefore, if both positive and negative electrification exists on
a conductor, there must be some other body in the field whose
potential has the same sign as that of the conductor but a greater
numerical value, and if a conductor of any form is alone in the
field the electrification of every part is of the same sign as the
potential of the conductor.
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Lines of Force.

47.] The line described by a point moving always in the direc-
tion of the resultant force is called a Line of force. It cuts the
equipotential surfaces at right angles. The properties of lines of
force will be more fully explained afterwards, because Faraday has
expressed many of the laws of electrical action in terms of his
coneeption of lines of foree drawn in the electric field, and indicating
both the direction and the magnitude of the force at every point.

Electric Tension.

48.] Since the surface of a conductor is an equipotential surface,
the resultant force is normal to the surface, and it will be shewn
in Art. 78 that it is proportional to the superficial density of the
electrification. Hence the electricity on any small area of the
surface will be acted on by a force tending from the conductor
and proportional to the product of the resultant force and the
density, that is, proportional to the square of the resultant foree.

This force which acts outwards as a tension onm every part of
the conductor will be called electric Tension. It is measured like
ordinary mechanical tension, by the force exerted on unit of area.

The word Tension has been used by electricians in several vague
senses, and it bas been attempted to adopt it in mathematical
language as a synonym for Potential ; but on examining the cases
in which the word has been used, I think it will be more con-
sistent with usage and with mechanical analogy to understand
by tension a pulling force of so many pounds per square inch
exerted on the surface of a conductor or elsewhere. 'We shall find
that the conception of Faraday, that this electric tension exists not
only at the electrified surface but all along the lines of force, leads
to a theory of electric action as a phenomenon of stress in a
mediam.

Electromotive Force.

49.] When two conductors at different potentials are connected
by a thin conducting wire, the tendency of electricity to flow
along the wire is measured by the difference of the potentials of
the two bodies. The difference of potentials between two con-
ductors or two points is therefore called the Electromotive force

between them.
Electromotive force may arise from other causes than difference
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of potential, but these causes are not considered in treating of sta-
tical electricity. We shall consider them when we come to chemical
actions, motions of magnets, inequalities of temperature, &e.

Capacity of o Conductor.

50.] If one conductor-is insulated while all the surrounding con-
ductors are kept -at the zero potential by being put in commu-
nication with the earth, and if the conductor, when charged with
a quantity Z of electricity, has a potential 7, the ratio of # to 7
is called the Capacity of the conductor. If the conductor is com-
pletely enclosed within a conducting vessel without touching it,
then the charge on the inner conductor will be equal and op-
posite to the charge on the inner surface of the outer conductor,
and will be equal to the capacity of the inner conductor multiplied
by the difference of the potentials of the two conductors.

Flectric Accumulators.

A system consisting of two conductors whose opposed surfaces
are separated from each other by a thin stratum of an insulating
medium is called an electric Accumulator. Its capacity is directly
proportional to the area of the opposed surfaces and inversely pro-
portional to the thickness of the stratum between them. A Leyden
jar is an accumulator in which glass is the insulating medium.
Accumulators are sometimes called Condensers, but I prefer to
restrict the term ‘condenser’ to an instrument which is used not to
hold electricity but to increase its superficial density.

PROPERTIES OF BODIES IN RELATION TO STATICAL ELECTRICITY.

Resistance to the Passage of Electricity through a Body.

51.] When a charge of electricity is communicated to any part
of a mass of metal the electricity is rapidly transferred from places
of high to places of low potential till the potential of the whole
mass becomes the same. In the case of pieces of metal used in
ordinary experiments this process is completed in a time too short
to be observed, but in the case of very long and thin wires, such
as those used in telegraphs, the potential does not become uniform
till after a sensible time, on account of the resistance of the wire
to the passage of electricity through it. '

The resistance to the passage of electricity is exceedingly dif-
ferent in different substances, as may be seen from the tables at
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Arts. 362, 366, and 369, which will be explained in treating of
Electric Currents.

All the metals are good conductors, though the resistance of
lead is 12 times that of copper or silver, that of iron 6 times,
and that of mercury 60 times that of copper. The resistance of all
metals increases as their temperature rises.

Selenium in its erystalline state may also be regarded as a con-
ductor, though its resistance is 3.7 x 1012 times that of a piece
of copper of the same dimensions. Its resistance increases as the
temperature rises. Selenium in the amorphous form is a good
insulator, like sulphur. :

Many liquids conduct electricity by electrolysis. This mode of
conduction will be considered in Part II. For the present, we may
regard all liquids containing water and all damp bodies as con-
ductors, far inferior to the metals, but incapable of insulating a
charge of electricity for a sufficient time to be observed.

On the other hand, the gases at the atmospheric pressure, whether
dry or moist, are insulators so nearly perfect when the electric tension
is small that we have as yet obtained no evidence of electricity passing
through them by ordinary conduction. The gradual loss of charge
by electrified bodies may in every case be traced to imperfect insu-
lation in the supports, the electricity either passing through the
substance of the support or creeping over its surface. Hence, when
two charged bodies are hung up near each other, they will preserve
their charges longer if they are electrified in opposite ways, than if
they are electrified in the same way. For though the electromotive
force tending to make the electricity pass through the air between
them is much greater when they are oppositely electrified, no per-
ceptible loss occurs in this way. The actual loss takes place through
the supports, and the electromotive force through the supports is
greatest when the bodies are electrified in the same way. The result
appears anomalous only when we expect the loss to occur by the
passage of electricity through the air between the bodies.

Certain kinds of glass when cold are marvelously perfeet in-
sulators, and Sir W. Thomson has preserved charges of electricity
for years in bulbs hermetically sealed. The same glass, however,
becomes a conductor at a temperature below that of boiling water.

Gutta-percha, caoutchoue, vulcanite, paraffin, and resins are good
insulators, the resistance of gutta-percha at 75°F. being about
6 x 101° times that of copper.

Ice, crystals, and solidified electrolytes, are also insulators.

VOL. I E
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Certain liquids, such as naphtha, turpentine, and some oils, are
insulators, but inferior to most of the solid insulators.

The resistance of most substances, except the metals, and selenium
and carbon, seems to diminish as the temperature rises.

DIELECTRICS.

Specific Inductive Capacity.

52.] All bodies whose insulating power is such that when they
are placed between two conductors at different potentials the elec-
tromotive force acting on them does not immediately distribute
their electricity so as to reduce the potential to a constant value, are
called by Faraday Dielectrics.

Faraday discovered that the capacity of an accumulator depends
on the nature of the insulating medium between the two conductors,
as well as on the dimensions and relative position of the conductors
themselves. By substituting other insulating media for air as the
dielectric of the accumulator, without altering it in any other
respect, he found that when air and other gases were employed as
the insulating medium the capacity of the accumulator remained the
same, but that when shell-lae, sulphur, glass, &e., were substituted
for air, the capacity was increased in a ratio which was different
for each substance.

The ratio of the capacity of an accumulator formed of any di-
electric medium to the capacity of an accumulator of the same form
and dimensions filled with air, was named by Faraday the Specific
Inductive Capacity of the dielectric medium. It is equal to unity
for air and other gases at all pressures, and probably at all tempe-
ratures, and it is greater than unity for all other liquid or solid
dielectrics which have been examined.

If the dielectric is not a good insulator, it is difficult to mea-
sure its inductive capacity, because the accumulator will not hold a
charge for a sufficient time to allow it to be measured ; but it is
certain that inductive capacity is a property not confined to good
insulators, and it is probable that it exists in all bodies.

Absorption of Electricity.
53.] It is found that when an accumulator is formed of certain
dielectrics, the following phenomena occur.
When the accumulator has been for some time electrified and is
then suddenly discharged and again insulated, it becomes recharged
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in the same sense as at first, but to a smaller degree, so that it may
be discharged again several times in succession, these discharges
always diminishing. This phenomenon is called that of the Re-
sidual Discharge.

The instantaneous discharge appears always to be proportional
to the difference of potentials at the instant of discharge, and the
ratio of these quantities is the true capacity of the accumulator;
but if the contact of the discharger is prolonged so as to include
some of the residual discharge, the apparent capacity of the accu-
mulator, calculated from such a discharge, will be too great.

The accumulator if charged and left insulated appears to lose its
charge by conduction, but it is found that the proportionate rate
of loss is much greater at first than it is afterwards, so that the
measure of conductivity, if deduced from what takes place at first,
would be too great. Thus, when the insulation of a submarine
cable is tested, the insulation appears to improve as the electrifi-
cation continues.

Thermal phenomena of a kind at first sight analogous take place
in the case of the conduction of heat when the opposite sides of a
body are kept at different temperatures. In the case of heat we
know that they depend on the heat taken in and given out by the
body itself. Hence, in the case of the electrical phenomena, it
has been supposed that electricity is absorbed and emitted by the
parts of the body. We shall see, however, in Art. 329, that the
phenomena can be explained without the hypothesis of absorption of
electricity, by supposing the dielectric in some degree heterogeneous.

That the phenomenon called Electric Absorption is not an
actual absorption of electricity by the substance may be shewn by
charging the substance in any manner with electricity while it is
surrounded by a closed metallic insulated vessel. If, when the
substance is charged and insulated, the vessel be instantaneously
discharged and then left insulated, no charge is ever communicated
to the vessel by the gradual dissipation of the electrification of the
charged substance within it.

54.] This fact is expressed by the statement of Faraday that
it is impossible to charge matter with an absolute and independent
charge of one kind of electricity *.

In fact it appears from the result of every experiment which
has been tried that in whatever way electrical actions may take

* Exp. Res., vol. i. series xi. M ii. “On the Absolute Charge of Matter,” and (1244).
E 2
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place among a system of bodies surrounded by a metallic vessel, the
charge on the outside of that vessel is not altered.

Now if any portion of electricity could be forced into a body
so as to be absorbed in it, or to become latent, or in any way
to exist in it, without being connected with an equal portion of
the opposite electricity by lines of induction, or if, after having
being absorbed, it could gradually emerge and return to its or-
dinary mode of action, we should find some change of electrifica-
tion in the surrounding vessel.

As this is never found to be the case, Faraday concluded that
it is impossible to communicate an absolute charge to matter, and
that no portion of matter can by any change of state evolve or
render latent one kind of electricity or the other. He therefore
regarded induction as ¢the essential function both in the first
development and the consequent phenomena of electricity.” His
“induction”’ is (1298) a polarized state of the particles of the
dielectric, each particle being positive on one side and negative
on the other, the positive and the negative electrification of each
particle being always exactly equal.

Disruptive Discharge*.

55.] If the electromotive force acting at any point of a dielectric
is gradually increased, a limit is at length reached at which there
is a sudden electrical discharge through the dielectric, generally
accompanied with light and sound, and with a temporary or per-
manent rupture of the dielectric.

The intensity of the electromotive force when this takes place
depends on the nature of the dielectric. It is greater, for instance,
in dense air than in rare air, and greater in glass than in air, but
in every case, if the electromotive force be made great emough,
the dielectric gives way and its insulating power is destroyed, so
that a current of electricity takes place through it. It is for this
reason that distributions of electricity for which the electric resultant
force becomes anywhere infinite cannot exist in nature.

The Electric GQlow.

Thus, when a conductor having a sharp point is electrified,
the theory, based on the hypothesis that it retains its charge,
leads to the conclusion that as we approach the point the super-
ficial density of the electricity increases without limit, so that at
the point itself the surface-density, and therefore the resultant

* See Faraday, Exp. Res., vol. i., series xii. and xiii.
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electrical force, would be infinite. If the air, or other surrounding
dielectric, had an invinecible insulating power, this result would
actually occur ; but the fact is, that as soon as the resultant force
in the neighbourhood of the point has reached a certain limit, the
insulating power of the air gives way, so that the air close to
the point becomes a conductor. At a certain distance from the
point the resultant force is not sufficient to break through the
insulation of the air, so that the electric current is checked, and
the electricity accumulates in the air round the peint.

The point is thus surrounded by particles of air charged with
electricity of the same kind with its own. The effect of this charged
air round the point is to relieve the air at the point itself from
part of the enormous electromotive force which it would have ex-
perienced if the conductor alone had been electrified. In fact the
surface of the electrified body is no longer pointed, because the
point is enveloped by a rounded mass of electrified air, the surface
of which, rather than that of the solid conductor, may be regarded
as the outer electrified surface.

If this portion of electrified air could be kept still, the elec-
trified body would retain its charge, if not on itself at least in its
neighbourhood, but the charged particles of air being free to move
under the action of electrical force, tend to move away from the elec-
trified body because it is charged with the same kind of electricity.
The charged particles of air therefore tend to move off in the direc-
tion of the lines of force and to approach those surrounding bodies
which are oppositely electrified. When they are gone, other un-
charged particles take their place round the point, and since these
cannot shield those next the point itself from the excessive elec-
tric tension, a new discharge takes place, after which the newly
charged particles move off, and so on as long as the body remains
electrified.

In this way the following phenomena are produced :—At and
close to the point there is a steady glow, arising from the con-
stant discharges which are taking place between the point and the
air very near it.

The charged particles of air tend to move off in the same general
direction, and thus produce a current of air from the point, con-
sisting of the charged particles, and probably of others carried along
by them. By artificially aiding this current we may increase the
glow, and by checking the formation of the current we may pre-
vent the continuance of the glow.
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The electric wind in the neighbourhood of the point is sometimes
very rapid, but it soon loses its velocity, and the air with its charged
particles is carried about with the general motions of the atmo-
sphere, and constitutes an invisible electric cloud. 'When the charged
particles come near to any conducting surface, such as a wall, they
induce on that surface an electrification opposite to their own, and
are then attracted towards the wall, but since the electromotive
force is small they may remain for a long time near the wall
without being drawn up to the surface and discharged. They
thus form an electrified atmosphere clinging to conductors, the pre-
sence of which may sometimes be detected by the electrometer.
The electrical forces, however, acting between charged portions
of air and other bodies are exceedingly feeble compared with the
forces which produce winds arising from inequalities of density
due to differences of temperature, so that it is very improbable
that any observable part of the motion of ordinary thunder clouds
arises from electrical causes.

The passage of electricity from one place to another by the
motion of charged particles is called Electrical Convection or Con-
vective Discharge.

The electrical glow is therefore produced by the constant passage
of electricity through a small portion of air in which the tension
is very high, so as to charge the surrounding particles of air which
are continually swept off by the electric wind, which is an essential
part of the phenomenon.

The glow is more easily formed in rare air than in dense air,
and more easily when the point is positive than when it is negative.
This and many other differences between positive and negative elec-
trification must be studied by those who desire to discover some-
thing about the nature of electricity. They have not, however,
been satisfactorily brought to bear upon any existing theory.

The Electric Brush.

56.] The electric brush is a phenomenon which may be pro-
duced by electrifying a blunt point or small ball so as to produce
an electric field in which the tension diminishes, but in a less, rapid
manner, as we leave the surface. It consists of a succession of
discharges, ramifying as they diverge from the ball into the air,
and terminating either by charging portions of air or by reaching
some other conductor. It is accompanied by a sound, the pitch of
which depends on the interval between the successive discharges,
and there is no current of air as in the case of the glow.
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Tke Electric Spark.

57.] When the tension in the space between two conductors is
considerable all the way between them, as in the case of two balls
whose distance is not great compared with their radii, the discharge,
when it occurs, usnally takes the form of a spark, by which nearly
the whole electrification is discharged at once.

In this case, when any part of the dielectric has given way,
the parts on either side of it in the direction of the electric force
are put into a state of greater temsion so that they also give way,
and so the discharge proceeds right through the dielectric, just as
when a little rent is made in the edge of a piece of paper a tension
applied to the paper in the direction of the edge causes the paper to
be torn through, beginning at the rent, but diverging occasionally
where there are weak places in the paper. The electric spark in
the same way begins at the point where the electric tension first
overcomes the insulation of the dielectric, and proceeds from that
point, in an apparently irregular path, so as to take in other weak
points, such as particles of dust floating in air.

On the Electric Force required to produce a Spark in Air.

In the experiments of Sir W. Thomson * the electromotive force
required to produce a spark across strata of air of various thick-
nesses was measured by means of an electrometer.

The sparks were made to pass between two surfaces, one of which
was plane, and the other only sufficiently convex to make the sparks
occur always at the same place. .

The difference of potential required to cause a spark to pass was
found to increase with the distance, but in a less rapid ratio, so that
the electric force at any point between the surfaces, which is the
quotient of the difference of potential divided by the distance, can
be raised to a greater value without a discharge when the stratum
of air is thin.

When the stratum of air is very thin, say .00254 of a centimétre,
the resultant force required to produce a spark was found to be
527.7, in terms of centimétres and grammes. This corresponds to
an electric tension of 11.29 grammes weight per square centimétre.

When the distance between the surfaces is about a millimétre
the electric force is about 130, and the electric tension .68 grammes
weight per square centimétre. It is probable that the value for

* Proc. R: 8., 1860 ; or, Reprint, chap. xix.
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greater distances is not much less than this. The ordinary pressure
of the atmosphere is about 1032 grammes per square centimétre.

It is difficult to explain why a thin stratum of air should require
a greater force to produce a disruptive discharge across it than a
thicker stratum. Is it possible that the air very near to the sur-
face of dense bodies is condensed, so as to become a better insu-
lator? or does the potential of an electrified conductor differ from
that of the air in contact with it by a quantity having a maximum
value just before discharge, so that the observed difference of
potential of the conductors is in every case greater than the dif-
ference of potentials on the two sides of the stratum of air by a
constant quantity equivalent to the addition of about .005 of an
‘inch to the thickness of the stratum ? See Art. 370.

All these phenomena differ considerably in different gases, and in
the same gas at different densities. Some of the forms of electrical
discharge through rare gases are exceedingly remarkable. In some
cases there is a regular alternation of luminous and dark strata, so
that if the electricity, for example, is passing along a tube contain-
ing a very small quantity of gas, a number of luminous disks will
be seen arranged transversely at nearly equal intervals along the
axis of the tube and separated by dark strata. If the strength of
the current be increased a new disk will start into existence, and
it and the old disks will arrange themselves in closer order. In
a tube described by Mr. Gassiot * the light of each of the disks
is bluish on the negative and reddish on the positive side, and
bright red in the central stratum.

These, and many other phenomena of electrical discharge, are
exceedingly important, and when they are better understood they
will probably throw great light on the nature of electricity as well
as on the nature of gases and of the medium pervading space. At
present, however, they must be considered as outside the domain of
the mathematical theory of electricity.

Electric Phenomena of Tourmaline.

58.] Certain crystals of tourmaline, and of other minerals, possess
what may be called Electric Polarity. Suppose a crystal of tour-
maline to be at a uniform temperature, and apparently free from
electrification on its surface. Let its temperature be now raised,
the crystal remaining insulated. One end will be found positively

* Intellectual Observer, March, 1866.
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and the other end negatively electrified. Let the surface be de-
prived of this apparent electrification by means of a flame or other-
wise, then if the crystal be made still hotter, electrification of the
same kind as before will appear, but if the crystal be cooled the
end which was positive when the crystal was heated will become
negative.

These electrifications are observed at the extremities of the crys-
tallographic axis. Some crystals are terminated by a six-sided
pyramid at one end and by a three-sided pyramid at the other.
In these the end having the six-sided pyramid becomes positive
when the crystal is heated.

Sir W. Thomson supposes every portion of these and other hemi-
hedral crystals to have a definite electric polarity, the intensity
of which depends on the temperature. When the surface is passed
through a flame, every part of the surface becomes electrified to
such an extent as to exactly neutralize, for all external points,
the effect of the internal polarity. The crystal then has no ex-
ternal electrical action, nor any tendency to change its mode of
electrification. But if it be heated or cooled the interior polariza-
tion of each particle of the erystal is altered, and can no longer
be balanced by the superficial electrification, so that there is a
resultant external action.

Plan of this Treatise.

59.] In the following treatise I propose first to explain the ordinary
theory of electrical action, which considers it as depending only
on the electrified bodies and on their relative position, without
taking account of any phenomena which may take place in the
surrounding media. In this way we shall establish the law of the
inverse square, the theory of the potential, and the equations of
Laplace and Poisson. We shall next consider the charges and
potentials of a system of electrified conductors as connected by
a system of equations, the coeflicients of which may be supposed
to be determined by experiment in those cases in which our present
mathematical methods are not applicable, and from these we shall
determine the mechanical forces acting between the different elec-
trified bodies.

We shall then investigate certain general theorems by which
Green, Gauss, and Thomson hayve indicated the conditions of so-
lution of problems in the distribution of electricity. One result
of these theorems is, that if Poisson’s equation is satisfied by any
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function, and if at the surface of every conductor the function
has the value of the potential of that conductor, then the func-
tion expresses the actual potential of the system at every point. We
also deduce a method of finding problems capable of exact solution.

In Thomson’s theorem, the total energy of the system is ex-
pressed in the form of the integral of a certain quantity extended
over the whole space between the electrified bodies, and also in
the form of an integral extended over the electrified surfaces only.
The equation between these two expressions may be thus inter-
preted physically. We may conceive the relation into which the
electrified bodies are thrown, either as the result of the state of
the intervening medium, or as the result of a direct action between
the electrified bodies at a distance. If we adopt the latter con-
ception, we may determine the law of the action, but we can go
no further in speculating on its cause. If, on the other hand,
we adopt the conception of action through a medium, we are led to
enquire into the nature of that action in each part of the medium.

It appears from the theorem, that if we are to look for the seat
of the electric energy in the different parts of the dielectric me-
dium, the amount of energy in any small part must depend on
the square of the intensity of the resultant electromotive force at
that place multiplied by a coefficient called the specific inductive
capacity of the medium.

It is better, however, in considering the theory of dielectrics
in the most general point of view, to distinguish between the elec-
tromotive force at any point and the electric polarization of the
medium at that point, since these directed quantities, though re-
lated to one another, are not, in some solid substances, in the same
direction. The most general expression for the electric energy of
the medium per unit of volume is half the product of the electro-
motive force and the electric polarization multiplied by the cosine
of the angle between their directions.

In all fluid dielectrics the electromotive force and the electric
polarization are in the same direction and in a constant ratio.

If we calculate on this hypothesis the total energy residing
in the medium, we shall find it equal to the energy due to the
electrification of the conductors on the hypothesis of direct action
at a distance. Hence the two hypotheses are mathematically equi-
valent.

If we now proceed to investigate the mechanical state of the
medium on the hypothesis that the mechanical action observed
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between electrified bodies is exerted through and by means of
the medium, as in the familiar instances of the action of one body
on another by means of the tension of a rope or the pressure of
a rod, we find that the medium must be in a state of mechanical
stress.

The nature of this stress is, as Faraday pointed out¥, a tension
along the lines of force combined with an equal pressure in all
diréctions at right angles to these lines. The magnitude of these
stresses is proportional to the energy of the electrification, or, in
other words, to the square of the resultant electromotive force mul-
tiplied by the specific inductive capacity of the medium.

This distribution of stress is the only one consistent with the
observed mechanical action on the electrified bodies, and also with
the observed equilibrium of the fluid dielectric which surrounds
them. I have therefore thought it a warrantable step in scientific
procedure to assume the actual existence of this state of stress, and
to follow the assumption into its consequences. Finding the phrase
electric tension used in several vague senses, I have attempted to
confine it to what I conceive to have been in the mind of some
of those who have used it, namely, the state of stress in the
dielectric medium which causes motion of the electrified bodies,
and leads, when continually augmented, to disruptive discharge.
Electric tension, in this sense, is a tension of exactly the same
kind, and measured in the same way, as the tension of a rope,
and the dielectric medium, which can support a certain tension
and no more, may be said to have a certain strength in exactly
the same sense as the rope is said to have a certain strength.
Thus, for example, Thomson has found that air at the ordinary
pressure and temperature can support an electric tension of 9600
grains weight per square foot before a spark passes.

60.] From the hypothesis that electric action is not a direct
action between bodies at a distance, but is exerted by means of
the medium between the bodies, we have deduced that this medium
must be in a state of stress. We have also ascertained the cha-
racter of the stress, and compared it with the stresses which may
occur in solid bodies. Along the lines of force there is tension,
and perpendicular to them there is pressure, the numerical mag-
nitude of these forces being equal, and each proportional to the
square of the resultant force at the point. Having established
these results, we are prepared to take another step, and to form

* Exp. Res., series xi. 1297. =
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an idea of the nature of the electric polarization of the dielectric
medium.

An elementary portion of a body may be said to be polarized
when it acquires equal and opposite properties on two opposite
sides. The idea of internal polarity may be studied to the greatest
advantage as exemplified in permanent magnets, and it will be
explained at greater length when we come to treat of magnetism.

The electric polarization of an elementary portion of a dielectric
is a forced state into which the medium is thrown by the action
of electromotive force, and which disappears when that force is
removed. We may conceive it to consist in what we may call
an electrical displacement, produced by the electromotive force.
When the electromotive force acts on a conducting medium it
produces a current through it, but if the medium is a non-con-
ductor or dielectric, the current cannot flow through the medium,
but the electricity is displaced within the medium in the direction
of the electromotive force, the extent of this displacement de-
pending on the magnitude of the electromotive force, so that if
the electromotive force increases oxr diminishes the electric displace-
ment increases and diminishes in the same ratio.

The amount of the displacement is measured by the quantity
of electricity which crosses unit of area, while the displacement
increases from zero to its actual amount. This, therefore, is the
measure of the electric polarization.

The analogy between the action of electromotive force in pro-
ducing electric displacement and of ordinary mechanical force in
producing the displacement of an elastic body is so obvious that
I have ventured to call the ratio of the electromotive force to the
corresponding electric displacement the coefficient of electric elasticity
of the medium. This coefficient is different in different media, and
varies inversely as the specific inductive capacity of each medium.

The variations of electric displacement evidently constitute electrie
currents. These currents, however, can only exist during the
variation of the displacement, and therefore, since the displace-
ment cannot exceed a certain value without causing disruptive
discharge, they cannot be continued indefinitely in the same direc-
tion, like the currents through conductors.

In tourmaline, and other pyro-electric erystals, it is probable that
a state of electric polarization exists, which depends upon tem-
perature, and does not require an external electromotive force to
produce it  If the interior of a body were in a state of permanent
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electric polarization, the outside would gradually become charged
in such a manner as to neutralize the action of the internal elec-
trification for all points outside the body. This external superficial
charge could not be detected by any of the ordinary tests, and
could not be removed by any of the ordinary methods for dis-
charging superficial electrifieation. The internal polarization of
the substance would therefore never be discovered unless by some
means, such as change of temperature, the amount of the internal
polarization could be increased or diminished. The external elec-
trification would then be no longer capable of neutralizing the
external effect of the internal polarization, and an apparent elec-
trification would be observed, -as in the case of tourmaline.

If a charge ¢ is uniformly distributed over the surface of a
sphere, the resultant force at any point of the medium surrounding
the sphere is numerically equal to the charge e divided by the square
of the distance from the centre of the sphere. This resultant force,
according to our theory, is accompanied by a displacement of elec-
tricity in a direction outwards from the sphere.

If we now draw a concentric spherical surface of radius , the whole
displacement, E, through this surface will be proportional to the
resultant force multiplied by the area of the spherical surface. But
the resultant force is directly as the charge e and inversely as the
square of the radius, while the area of the surface is directly as the
square of the radius.

Hence the whole displacement, E, is proportional to the charge e,
and is independent of the radius.

To determine the ratio between the charge e, and the quantity
of electricity, Z, displaced outwards through the spherical surface,
let us consider the work done upon the medium in the region
between two concentric spherical surfaces, while the displacement
is increased from £ to £+ 8F. If 7, and 7, denote the potentials
at the inner and the outer of these surfaces respectively, the elec-
tromotive force by which the additional displacement is produced
is 7, —7,, so that the work spent in augmenting the displacement
is (V;— V)8 E.

If we now make the inner surface coincide with that of the
electrified sphere, and make the radius of the other infinite, 7
becomes 7, the potential of the sphere, and 7, becomes zero, so
that the whole work done in the surrounding medium is 73 E.

But by the ordinary theory, the work done in augmenting the
charge is 7 3¢, and if this is spent, as we suppose, in augmenting
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the displacement, 3% = ¢, and since # and e vanish together,
E=e¢, or—

The displacement outwards through any spherical surface concentric
with the sphere is equal to the charge on the sphere.

To fix our ideas of electric displacement, let us consider an accu-
mulator formed of two conducting plates 4 and B, separated by a
stratum of a dielectric C. Let /7 be a conducting wire joining
4 and B, and let us suppose that by the action of an electromotive
force a quantity @ of positive electricity is transferred along the
wire from B to 4. The positive electrification of 4 and the
negative electrification of B will produce a certain electromotive
force acting from 4 towards B in the dielectric stratum, and this
will produce an electric displacement from A towards B within the
dielectric. The amount of this displacement, as measured by the
quantity of electricity forced across an imaginary section of the
dielectric dividing it into two strata, will be, according to our
theory, exactly Q. See Arts. 75, 76, 111.

It appears, therefore, that at the same time that a quantity
@ of electricity is being transferred along the wire by the electro-
motive force from B towards 4, so as to cross every section of
the wire, the same quantity of electricity crosses every section
of the dielectric from 4 towards B by reason of the electric dis-
placement.

The reverse motions of electricity will take place during the
discharge of the accumulator. In the wire the discharge will be
@ from 4 to B, and in the dielectric the displacement will subside,
and a quantity of electricity @ will cross every section from B
towards 4.

Every case of electrification or discharge may therefore be con-
sidered as a motion in a closed circuit, such that at every section
of the circuit the same quantity of electricity crosses in the same
time, and this 1s we case, not only in the voltaic circuit where
it has always been recognised, but in those cases in which elec-
tricity has been generally supposed to be accumulated in certain
places.

61.] We are thus led to a very remarkable consequence of the
theory which we are examining, namely, that the motions of elec-
tricity are like those of an imcompressible fluid, so that the total
quantity within an imaginary fixed closed surface remains always
the same. This result appears at first sight in direct contradiction
to the fact that we can charge a conductor and then introduce
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it into the closed space, and so alter the quantity of electricity
within that space. But we must remember that the ordinary theory
takes no account of the electric displacement in the substance of
dielectries which we have been investigating, but confines its
attention to the electrification at the bounding surfaces of the
conductors and dielectrics. In the case of the charged conductor
let us suppose the charge to be positive, then if the surrounding
dielectric extends on all sides beyond the closed surface there will be
electric polarization, accompanied with displacement from within
outwards all over the closed surface, and the surface-integral of
the displacement taken over the surface will be equal to the charge
on the conductor within.

Thus when the charged conductor is introduced into the closed
space there is immediately a displacement of a quantity of elec-
tricity equal to the charge through the surface from within out-
wards, and the whole- quantity within the surface remains the
same.

The theory of electric polarization will be discussed at greater
length in Chapter V, and a mechanical illustration of it will be
given in Art. 334, but its importance cannot be fully understood
till we arrive at the study of electromagnetic phenomena.

62.] The peculiar features of the theory as we have now de-
veloped them are :—

That the energy of electrification resides in the dielectric medium,
whether that medium be solid, liquid, or gaseous, dense or rare,
or even deprived of ordinary gross matter, provided it be still
capable of transmitting electrical action.

That the energy in any part of the medlum is stored up in
the form of a state of constraint called electric polarization, the
amount of which depends on the resultant electromotive force at
the place.

That electromotive force acting on a dlelcwm, ’produces what
we have called electric dlsplacement the relation between the force
and the displacement being in the most general case of a kind

to be afterwards investigated in treating of conduction, but in
" the most important cases the force is in the same direction as
the displacement, and is numerically equal to the displacement
multiplied by a quantity which we have called the coefficient of
electric elasticity of the dielectric.

That the energy per unit of volume of the dielectric arising from
the electric polarization is half the product of the electromotive
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force and the electric displacement multiplied, if necessary, by the
cosine of the angle between their directions.

That in fluid dielectrics the electric polarization is accompanied
by a tension in the direction of the lines of force combined with
an equal pressure in all directions at right angles to the lines
of force, the amount of the tension or pressure per unit of area
being numerically equal to the energy per unit of volume at the
same place.

That the surfaces of any elementary portion into which we may
conceive the volume of the dielectric divided must be conceived
to be electrified, so that the surface-density at any point of the
surface is equal in magnitude to the displacement through that
point of the surface reckoned inwards, so that if the displacement
is in the positive direction, the surface of the element will be elec-
trified negatively on the positive side and positively on the negative
side. These superficial electrifications will in general destroy one
another when consecutive elements are considered, except where
the dielectric has an internal charge, or at the surface of the
dielectric.

That whatever electricity may be, and whatever we may under-
stand by the movement of electricity, the phenomenon which we
have called electric displacement is a movement of electricity in the
same sense as the transference of a definite quantity of electricity
through a wire is a movement of electricity, the only difference
being that in the dielectric there is a force which we have called
electric elasticity which acts against the electric displacement, and
forces the electricity back when the electromotive force is removed ;
whereas in the conducting wire the electric elasticity is continually
giving way, so that a current of true conduction is set up, and
the resistance depends, not on the total quantity of electricity dis-
placed from its position of equilibrium, but on the quantity which
crosses a section of the conductor in a given time.

That in every case the motion of electricity is subject to the
same condition as that of an incompressible fluid, namely, that
at every instant as much must flow out of any given closed space
as flows into it.

It follows from this that every electric current must form a
closed circuit. The importance of this result will be seen when we
investigate the laws of electro-magnetism.

Since, as we have seen, the theory of direct action at a distance
is mathematically identical with that of action by means of a
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medium, the actual phenomena may be explained by the one
theory as well as by the other, provided suitable hypotheses be
introduced when any difficulty occurs. Thus, Mossotti has deduced
the mathematical theory of dielectrics from the ordinary theory
of attraction by merely giving an electric instead of a magnetic
interpretation to the symbols in the investigation by which Poisson
has deduced the theory of magnetic induction from the theory of
magnetic fluids. He assumes the existence within the dielectric of
small conducting elements, capable of having their opposite surfaces
oppositely electrified by induction, but not capable of losing or
gaining electricity on the whole, owing to their being insulated
from each other by a non-conducting medium. This theory of
dielectries is consistent with the laws of electricity, and may be
actually true. If it is true, the specific inductive capacity of a
dielectric may be greater, but cannot be less, than that of air or
vacuum. No instance has yet been found of a dielectric having
an inductive capacity less than that of air, but if such should
be discovered, Mossotti’s theory must be abandoned, although his
formulae would all remain exact, and would only require us to alter
the sign of a coefficient.

In the theory which I propose to develope, the mathematical
methods are founded upon the smallest possible amount of hypo-
thesis, and thus equations of the same form are found applicable to
phenomena which are certainly of quite different natures, as, for
instance, electric induction through dielectrics ; conduction through
conductors, and magnetic induction. In all these cases the re-
lation between the force and the effect produced is expressed by
a set of equations of the same kind, so that when a problem in
one of these subjects is solved, the problem and its solution may
be translated into the language of the other subjects and the
results in their new form will also be true.

VOL. I. F
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ELEMENTARY MATHEMATICAL THEORY OF STATICAL

ELECTRICITY.

Definition of Electricity as a Mathematical Quantity.

63.] We have seen that the actions of electrified bodies are such
that the electrification of one body may be equal to that of another,
or to the sum of the electrifications of two bodies, and that when
two bodies are equally and oppositely electrified they have no elec-
trical effect on external bodies when placed together within a closed
insulated conducting vessel. We may express all these results in
a concise and consistent manner by describing an electrified body as
charged with a certain quantity of electricity, which we may denote
by e.  When the electrification is positive, that is, according to the
usual convention, vitreous, ¢ will be a positive quantity. When the
electrification is negative or resinous, ¢ will be negative, and the
quantity —e may be interpreted either as a negative quantity of
vitreous electricity or as a positive quantity of resinous electricity.

The" effect of adding together two equal and opposite charges of
electricity, 4+ ¢ and —e, is to produce a state of no electrification
expressed by zero. 'We may therefore regard a body not electrified
as virtually charged with equal and opposite charges of indefinite
magnitude, and an electrified body as virtually charged with un-
equal quantities of positive and negative electricity, the algebraic
sum of these charges constituting the observed electrification. It is
manifest, however, that this way of regarding an electrified body
is entirely artificial, and may be compared to the conception of the
velocity of a body as compounded of two or more different velo-
cities, no one of which is the actual velocity of the body. When
we speak therefore of a body being charged with a quantity e of
electricity we mean simply that the body is electrified, and that
the electrification is vitreous or resinous according as e is positive
or negative.
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ON ELECTRIC DENSITY.

Distribution in Three Dimensions.

64.] Definition. The electric volume-density at a given point
in space is the limiting ratio of the quantity of electricity within
a sphere whose centre is the given point to the volume of the
sphere, when its radius is diminished without limit.

We shall denote this ratio by the symbol p, which may be posi-
tive or negative.

Distribution on a Surface.

It is a result alike of theory and of experiment, that, in certain
cases, the electrification of a body is entirely on the surface. The
density at a point on the surface, if defined according to the method
given above, would be infinite. We therefore adopt a different
method for the measurement of surface-density.

Definition. The electric density at a given point on a surface is
the limiting ratio of the quantity of electricity within a sphere
whose centre is the given point to the area of the surface contained
within the sphere, when its radius is diminished without limit.

We shall denote the surface-density by the symbol o.

Those writers who supposed electricity to be a material fluid
or a collection of particles, were obliged in this case to suppose
the electricity distributed on the surface in the form of a stratum
of a certain thickness 6, its density being p,, or that value of p
which would result from the particles having the closest contact
of which they are capable. It is manifest that on this theory

po 0 = o.
When ¢ is negative, according to this theory, a certain stratum
of thickness 6 is left entirely devoid of positive electricity, and
filled entirely with negative electricity.

There 1s, however, no experimental evidence either of the elec-
tric stratum having any thickness, or of electricity being a fluid
or a collection of particles. We therefore prefer to do without the
symbol for the thickness of the stratum, and to use a special symbol
for surface-density.

Distribution along a Line.
It is sometimes convenient to suppose electricity distributed
on a line, that is, a long narrow body of which we neglect the
F 2
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thickness. In this case we may define the line-density at any point
to be the limiting ratio of the electricity on an element of the
line to the length of that element when the element is diminished
without limit.

If X denotes the line-density, then the whole quantity of elee-

tricity on a curve is e = f A ds, where ds is the element of the curve.

Similarly, if ¢ is the surface-density, the whole quantity of elec-
tricity on the surface is

= [feas

where 48 is the element of surface.

If p is the volume-density at any point of space, then the whole
electricity within a certain volume is

e =fffpdxdydz,

where dx dy dz is the element of volume. The limits of integration
in each case are those of the curve, the surface, or the portion of
space considered.

It is manifest that e, A, o and p are quantities differing in kind,
each being one dimension in space lower than the preceding, so that
if @ be a line, the quantities ¢, aA, a%0, and a3p will be all of the
same kind, and if @ be the unit of length, and A, o, p each the
unit of the different kinds of density, aA, 4?0, and @3p will each
denote one unit of electricity.

Definition of the Unit of Electricity.

65.] Let 4 and B be two points the distance between which
is the unit of length. Let two bodies, whose dimensions are small
compared with the distance 4B, be charged with equal quantities
of positive electricity and placed at 4 and B respectively, and
let the charges be such that the force with which they repel each
other is the unit of force, measured as in Art. 6. Then the charge
of either body is said to be the unit of electricity. If the charge of
the body at B were a unit of negative electricity, then, since the
action between the bodies would be reversed, we should have an
attraction equal to the unit of force.

If the charge of 4 were also negative, and equal to unity, the
force would be repulsive, and equal to unity.

Since the action between any two portions of electricity is not
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affected by the presence of other portions, the repulsion between
e units of electricity at 4 and ¢ units at B is ¢, the distance
AB being unity. See Art. 39.

Law of Force between Electrified Bodies.

66.] Coulomb shewed by experiment that the force between
electrified bodies whose dimensions are small compared with the
distance between them, varies inversely as the square of the dis-
tance. Hence the actual repulsion between two such bodies charged
with quantities ¢ and ¢ and placied at a distance 7 is

ee
e

We shall prove in Art. 74 that this law is the only one con-
sistent with the observed fact that a conductor, placed in the inside
of a closed hollow conductor and in contact with it, is deprived of
all electrical charge. Our conviction of the accuracy of the law
of the inverse square of the distance may be considered to rest
on experiments of this kind, rather than on the direct measure-
ments of Coulomb.

Resultant Force between Two Bodies.

67.] In order to find the resultant force between two bodies
we might divide each of them into its elements of volume, and
consider the repulsion between the electricity in each of the elements
of the first body and the electricity in each of the elements of the
second body. We should thus get a system of forces equal in
number to the product of the numbers of the elements into which
we have divided each body, and we should have to combine the
effects of these forces by the rules of Statics. Thus, to find the
component in the direction of # we should have to find the value
of the sextuple integral

fff[/] pp (x—a") de dy dz d2’dy’ d2

N @ =P+~ (c—2F)3

where z, 7, z are the coordinates of a point in the first body at
which the electrical density is p, and 2/, 3, 7, and p’ are the

corresponding quantities for the second body, and the integration
is extended first over the one body and then over the other.

Resultant Force at a Poind.

68.] In order to simplify the mathematical process, it is con-
venient to consider the action of an electrified body, not on another

=
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body of any form, but on an indefinitely small body, charged with
an indefinitely small amount of electricity, and placed at any point
of the space to which the electrical action extends. By making
the charge of this body indefinitely small we render insensible its
disturbing action on the charge of the first body.

Let e be the charge of this body, and let the force acting on
it when placed at the point (2, 7, 2) be Re, and let the direction-
cosines of the force be 7/, m, #, then we may call 2 the resultant
force at the point (z, 7, 2).

In speaking of the resultant electrical force at a point, we do not
necessarily imply that any force is actually exerted there, but only
that if an electrified body were placed there it would be acted on
by a force Re, where ¢ is the charge of the body.

Definition. The Resultant electrical force at any point is the
force which would be exerted on a small body charged with the unit
of positive electricity, if it were placed there without disturbing the
actual distribution of electricity.

This force not only tends to move an electrified body, but to
move the electricity within the body, so that the positive electricity
tends to move in the direction of B and the negative electricity
in the opposite direction. Hence the force R is also called the
Electromotive Force at the point (z, 7, 2).

When we wish to express the fact that the resultant force is a
vector, we shall denote it by the German letter €. If the body
is a dielectric, then, according to the theory adopted in this
treatise, the electricity is displaced within it, so that the quantity
of electricity which is forced in the direction of € across unit
of area fixed perpendicular to € is

1

where ® is the displacement, € the resultant force, and K the
specific inductive capacity of the dielectric. For air, K = 1.

If the body is a conductor, the state of constraint is continually
giving way, so that a current of conduction is produced and main-
tained as long as the force € acts on the medium.

Components of the Resultant Force.
If X, Y, Z denote the components of R, then
X:Rl, Y=Rm, Z:Rn;
where /, m, n are the direction-cosines of .
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Line-Integral of Electric Force, or Electromotive Force along
an Are of a Curve.

69.] The Electromotive force along a given arc AP of a curve is
numerically measured by the work which would be done on a unit
. of positive electricity carried along the curve from the beginning,
4, to P, the end of the arc.

If s is the length of the arc, measured from 4, and if the re-
sultant force R at any point of the curve makes an angle ¢ with
the tangent drawn in the positive direction, then the work donme
on unit of electricity in moving along the element of the curve
ds will be R cos eds,

and the total electromotive force 7 will be
V=f‘Rcosea’s,
0

the integration being extended from the beginning to the end
of the are.
If we make use of the components of the force &, we find

' ¢ de dy dz
V:ﬁ (X T +YL +27)ds

If X, 7, and Z are such that Xde+ ¥Ydy+Zdz is a complete
differential of a function of 2, y, 2, then

P
V=/ (Xde+ Ydy+2Zdz) = V;—Ip;
4

where the integration is performed in any way from the point 4
to the point P, whether along the given curve or along any other
line between 4 and P.

In this case 7 is a scalar function of the position of a point in
space, that is, when we know the coordinates of the point, the value
of 7 is determinate, and this value is independent of the position
and direction of the axes of reference. See Art. 16.

On Functions of the Position of a Point.

In what follows, when we deseribe a quantity as a function of
the position of a point, we mean that for every position of the point
the function has a determinate value. We do not imply that this
value can always be expressed by the same formula for all points of
space, for it may be expressed by one formula on one side of a
given surface and by another formula on the other side.
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On Potential Functions.

70.] The quantity Xdz+Ydy+Zdz is an exact differential
whenever the force arises from attractions or repulsions whose in-
tensity is a function of the distance only from any number of
points. For if 7, be the distance of one of the points from the point
(@, ¥, 2), and if R, be the repulsion, then

X, =R i=R, %,
with similar expressions for ¥; and Z], so that
X do+Y,dy+2,de = R, dry;
and since R, is a function of 7, only, 2, dr, is an exact differential
of some function of 7, say 7.

Similarly for any other force R,, acting from a centre at dis-

tance 7,,

Xode+ Y,dy+Z,dz = R,dr, = dV,.
But X = X, +X,+&ec. and ¥ and Z are compounded in the same
way, therefore

Xde+Ydy+Zde = dV,+dV,+ &e. = dV.

¥, the integral of this quantity, under the condition that 7 = 0
at an infinite distance, is called the Potential Function.

The use of this function in the theory of attractions was intro-
duced by Laplace in the calculation of the attraction of the earth.
Green, in his essay ¢ On the Application of Mathematical Analysis
to Electricity,” gave it the name of the Potential Function. Gauss,
working independently of Green, also used the word Potential.
Clausius and others have applied the term Potential to the work
which would be done if two bodies or systems were removed to
an infinite distance from one another. We shall follow the use of
the word in recent English works, and avoid ambiguity by adopting
the following definition due to Sir W. Thomson.

Definition of Potential. 'The Potential at a Point is the work
which would be done on a unit of positive electricity by the elec-
tric forces if it were placed at that point without disturbing the
electric distribution, and carried from that point to an infinite
distance.

71.] Expressions for the Resultant Force and its components in
terms of the Potential.

Since the total electromotive force along any arc 4B is

VA_VBa
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if we put ds for the arc 4B we shall have for the force resolved
in the direction of ds,

av
Rcose = -7
whence, by assuming ds parallel to each of the axes in succession,
we get
£ X:——({Z: Y=-—--‘£K; =—d—V;
z dy dz
avi® arf dvi*y
e e e

We shall denote the force itself, whose magnitude is £ and whose
components are X, ¥, Z, by the German letter €, as in Arts. 17
and 68.

The Potential at all Points within a Conductor is the same.

72.] A conductor is a body which allows the electricity within
it to move from one part of the body to any other when acted on
by electromotive force. When the electricity is in equilibrium
there can be no electromotive force acting within the conductor.
Hence R = 0 throughout the whole space occupied by the con-
ductor. From this it follows that

av av av
% = 0, TJ‘; = O: _(E =0 3
and therefore for every point of the conductor
¥ = C,

where Cis a constant quantity.

Potential of a Conductor.

Since the potential at all points within the substance of the
conductor is C, the quantity C is called the Potential of the con-
ductor. C may be defined as the work which must be done by
external agency in order to bring a unit of electricity from an
infinite distance to the conductor, the distribution of electricity
being supposed not to be disturbed by the presence of the unit.

If two conductors have equal potentials, and are connected by
a wire so fine that the electricity on the wire itself may be neg-
lected, the total electromotive force along the wire will be zero,
and no electricity will pass from the one conductor to the other.

If the potentials of the conductors 4 and B be 74 and 73, then
the electromotive force along any wire joining 4 and B will be

Va—=7Vs
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in the direction 4B, that is, positive electricity will tend to pass
from the conductor of higher potential to the other.

Potential, in electrical science, has the same relation to Elec-
tricity that Pressure, in Hydrostatics, has to Fluid, or that Tem-
perature, in Thermodynamics, has to Heat. Electricity, Fluids,
and Heat all tend to pass from one place to another, if the Poten-
tial, Pressure, or Temperature is greater in the first place than in
the second. A fluid is certainly a substance, heat is as certainly
not a substance, so that though we may find assistance from ana-
logies of this kind in forming clear ideas of formal electrical rela-
tions, we must be careful not to let the one or the other analogy
suggest to us that electricity is either a substance like water, or
a state of agitation like heat.

Potential due to any Electrical System.

73.] Let there be a single electrified point charged with a quantity
¢ of electricity, and let » be the distance of the point #7, #/, ¢ from it,

then V:f R(Zr:f -e—zdr=f.
{2 r r *

Let there be any number of electrified points whose ecoordinates
are (21, %1, 41) (%2, Y25 25), &ec. and their charges ¢, ¢,, &c., and
let their distances from the point (2,7, #) be r,, ,, &c., then the
potential of the system at 2, #/, 2 will be

r=36

Let the electric density at any point (2, y, 2) within an elec-
trified body be p, then the potential due to the body is

V://fﬁ;dxdydz;

where r={(e—ay+ (=9t +e—2 21
the integration being extended throughout the body.

On the Proof of the Law of the Inverse Square.

74.] The fact that the force between electrified bodies is inversely
as the square of the distance may be considered to be established
by direct experiments with the torsion-balance. The results, how-
ever, which we derive from such experiments must be regarded
as affected by an error depending on the probable error of each
experiment, and unless the skill of the operator be very great,
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the probable error of an experiment with the torsion-balance is
considerable. As an argument that the attraction is really, and
not merely as a rough approximation, inversely as the square of the
distance, Experiment VII (p. 34) is far more conclusive than any
measurements of electrical forces can be.

In that experiment a conductor B, charged in any manner, was
enclosed in a hollow conducting vessel ¢, which completely sur-
rounded it. € was also electrified in any manner.

B was then placed in electric communieation with C, and was then
again insulated and removed from ¢ without touching it, and ex-
amined by means of an electroscope. In this way it was shewn
that a econductor, if made to touch the inside of a conducting vessel
which completely encloses it, becomes completely discharged, so
that no trace of electrification can be discovered by the most
delicate electrometer, however strongly the conductor or the vessel
has been previously electrified.

The methods of detecting the electrification of a body are so
delicate that a millionth part of the original electrification of B
could be observed if it existed. No experiments involving the direct
measurement of forces can be brought to such a degree of accuracy.

It follows from this experiment that a non-electrified body in the
inside of a hollow conduetor is at the same potential as the hollow
conductor, in whatever way that conductor is charged. For if it
were not at the same potential, then, if it were put in electric
connexion with the vessel, either by touching it or by means of
a wire, electricity would pass from the one body to the other, and
the conductor, when removed from the vessel, would be found to be
electrified positively or negatively, which, as we have already stated,
1s not the case.

Hence the whole space inside a hollow conductor is at the same
potential as the conductor if no electrified body is placed within it.
If the law of the inverse square is true, this will be the case what-
ever be the form of the hollow conductor. Our object at present,
however, is to ascertain from this fact the form of the law of
attraction.

For this purpose let us suppose the hollow conductor to be a thin
spherical shell. Since everything is symmetrical about its centre,
the shell will be uniformly electrified at every point, and we have
to enquire what must be the law of attraction of a uniform spherical
shell, so as to fulfil the condition that the potentlal at every point
within it shall be the same.
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Let the force at a distance  from a point at which a quantity e
of electricity is concentrated be 2, where £ is some function of r.
All central forces which are functions of the distance admit of a

potential, let us write @ for the potential function due to a unit

of electricity at a distance ».
Let the radius of the spherical shell be a, and let the surface-

density be o. Let P be any point within the shell at a distance
p from the centre. Take the radius through P as the axis of
spherical coordinates, and let 7 be the distance from P to an element
d8 of the shell. Then the potential at P is

V= fa'@ds,

2 T
V:/ fu‘f—‘@ﬂsinedﬂdcp.
0 0 r

Now 72 = a®—2ap cos 0+ p2,
rdr = apsin 6 d6.
a a+p
Hence V= 27rcr»~f S dr;
PYa—p

and 7 must be constant for all values of p less than a.
Multiplying both sides by p and differentiating with respect to p,
V=2zca{fa+p)+/fla—p)}.
Differentiating again with respect to p,
0 = /" (a+p)—f" (a—p).
Since @ and p are independent,
J(#) = C, a constant.

Hence S = Cr+C,
and the potential function is
M = C + g .
r 7

The force at distance » is got by differentiating this expression
with respect to 7, and changing the sign, so that
0’
or the force is inversely as the square of the distance, and this
therefore is the only law of force which satisfies the condition that
the potential within a uniform spherical shell is constant*. Now

* See Pratt’'s Mechanical Philosophy, p. 144.
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this condition is shewn to be fulfilled by the electric forces with
the most perfect accuracy. Hence the law of electric force is
verified to a corresponding degree of accuracy.

Surface-Integral of Electric Induction, and Electric Displacement
through a Surface.

75.] Let R be the resultant force at any point of the surface,
and e the angle which R makes with the normal drawn towards the
positive side of the surface, then R cose is the component of the
force normal to the surface, and if 48 is the element of the surface,
the electric displacement through 8 will be, by Art. 68,

> KR cos e dS.
47

Since we do not at present consider any dielectric except air, A=1.

‘We may, however, avoid introducing at this stage the theory of
electric displacement, by calling R cose 45 the Induction through
the element dS. This quantity is well known in mathematical
physics, but the name of induction is borrowed from Faraday.
The surface-integral of induction is

/ R cos e d8,

and it appears by Art. 21, that if X, ¥, Z gre the components of &,
and if these quantities are continuous within a region bounded by a
closed surface §, the induction reckoned from within outwards is

fchosedS _fff(a’X d;’ dZ)dwdydz,

the integration being extended through the whole space within the
surface.

Induction through a Finite Closed Surface due to a Single Centre
of Force.

76.] Let a quantity e of electricity be supposed to be placed at a
point O, and let » be the distance of any point P from O, the force

at that point is B = -:7 in the direction OP.

Let a line be drawn from O in any direction to an infinite
distance. If O is without the closed surface this line will either
not cut the surface at all, or it will issue from the surface as many
times as it enters. If O is within the surface the line must first
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issue from the surface, and then it may enter and issue any number
of times alternately, ending by issuing from it.

Let € be the angle between OP and the normal to the surface
drawn outwards where OP cuts it, then where the line issues from
the surface cose will be positive, and where it enters cose will
be negative.

Now let a sphere be described with centre O and radius unity,
and let the line OP describe a conical surface of small angular
aperture about O as vertex.

This cone will cut off a small element do from the surface of the
sphere, and small elements d8,, d8,, &ec. from the closed surface at
the various places where the line OP intersects it.

Then, since any one of these elements &8 intersects the cone at a
distance 7 from the vertex and at an obliquity e,

dS = r?secedow;
and, since £ = er~%, we shall have
LcosedS = 1 edo;

the positive sign being taken when 7 issues from the surface, and
the negative where it enters it.

If the point O is without the closed surface, the positive values
are equal in number to the negative ones, so that for any direction
of r, SReosedS =0,

and therefore f f ReosedS = 0,

the integration being extended over the whole closed surface.

If the point O is within the closed surface the radius vector OP
first issues from the closed surface, giving a positive value of e dow,
and then has an equal number of entrances and issues, so that in
this case SRcosedS = eda.

Extending the integration over the whole closed surface, we shall
include the whole of the spherical surface, the area of which is 4,

so that
f RcosedS = ef[dw = 4d7e.

Hence we conclude that the total induction outwards through a
closed surface due to a centre of force ¢ placed at a point O is
zero when O is without the surface, and 47we when O is within
the surface.

Since in air the displacement is equal to the induction divided
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by 4=, the displacement through a closed surface, reckoned out-
wards, is equal to the electricity within the surface.

Corollary. 1t also follows that if the surface is not closed but
is bounded by a given closed curve, the total induction through
it is we, where o is the solid angle subtended by the closed curve
at 0. This quantity, therefore, depends only on the closed curve,
and not on the form of the surface of which it is the boundary.

On the Egquations of Laplace and Poisson.

77.] Since the value of the total induction of a single centre
of force through a closed surface depends only on whether the
centre is within the surface or not, and does not depend on its
position in any other way, if there are a number of such centres
€15 €, &c. within the surface, and ¢, ¢, &e. without the surface,

we shall have
fchose(lS = 47e;

where e denotes the algebraical sum of the quantities of elec-
tricity at all the centres of force within the closed surface, that is,
the total electricity within the surface, resinous electricity being
reckoned negative.

If the electricity is so distributed within the surface that the
density is nowhere infinite, we shall have by Art. 64,

dme = 4wfffpdxdydz,
and by Art. 75,

[chosedS ffde i %)(deytlz.

If we take as the closed surface that of the element of volume
dx dy dz, we shall have, by equating these expressions,

IX  aY | iZ

dr Tt dy iz

and if a potential 7 exists, we find by Art. 71,

axyv.  d*v_ drv
p +W+7z§- +4mp = 0.

= 47p;

This equation, in the case in which the density is zero, is called
Laplace’s Equation. In its more general form it was first given by
Poisson. It enables us, when we know the potential at every point,
to determine the distribution of electricity.
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‘We shall denote, as at Art. 26, the quantity -
# axv . d¥yv
%g + gt gm =
and we may express Poisson’s equation in words by saying that
the electric density multiplied by 47 is the concentration of the
potential. Where there is no electrification, the potential.has no
concentration, and this is the interpretation of Laplace’s equation.
If we suppose that in the superficial and linear distributions of
electricity the volume-density p remains finite, and that the elec-
tricity exists in the form of a thin stratum or narrow fibre, then,
by increasing p and diminishing the depth of the stratum or the
section of the fibre, we may approach the limit of true superficial
or linear distribution, and the equation being true throughout the
process will remain true at the limit, if interpreted in accordance
with the actual circumstances. '

On the Conditions to be fulfilled at an Electrified Surfuce.

78.] We shall consider the electrified surface as the limit to
which an eleetrified stratum of density p and thickness » approaches
when p is increased and » diminished without limit, the product p»
being always finite and equal to ¢ the surface-density.

Let the stratum be that included between the surfaces

F(@,9,2) = F=a (1)
and F = a4k (2)
., dF? dF}* dF?
2 = < ==l 3
If we put R 77 g 7 L (3)
and if /, m, » are the direction-cosines of the normal to the surface,
ar ar ar
= =5 = -5 = . 4
Rl ;o Rm 7 Rn 2 (4)

Now let 7] be the value of the potential on the negative side
of the surface ' = a, 7’ its value between the surfaces # = ¢ and
F = a+h,and 7, its value on the positive side of F = a+4.

Also, let py, p’, and p, be the values of the density in these three
portions of space. Then, since the density is everywhere finite,
the second derivatives of 7 are everywhere finite, and the first
derivatives, and also the function itself, are everywhere continuous
and finite.

At any point of the surface #/ = a let a normal be drawn of
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length », till it meets the surface #/ = a +4, then the value of F at
the extremity of the normal is
dF
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